Back to knowledge
JRC

From 3G to 5G District Heating and Cooling networks (energy generation to substations)

DESCRIPTION:  

The new generation of district heating and cooling networks are based on low and/or ultra-low temperature sources of renewable energy and waste heat for heating as well as high-temperature cooling. Such networks provide key options for decarbonizing the thermal energy needs of the building sector and allow supporting strategies for climate neutrality in the urban context for reaching net-zero greenhouse gas emissions while increasing energy security. This factsheet aims to provide knowledge, information, and recommendations on advancing district heating and cooling networks into the new generation based on low and/or ultra-low temperature district heating solutions. The factsheet provides perspectives on establishing the complete network from energy generation to substations toward climate neutrality in urban areas. 
 
Each successive generation of district heating and/or cooling technologies has involved an improvement in supply temperatures and efficiencies. For heating, whereas the current generation of third generation (3G) district heating networks involves supply temperatures at 100°C and below, distribution efficiencies and grid losses are further improved in the newer generation of fourth (4G) or fifth generation (5G) networks. The common point of such networks is the utilisation of locally available renewable energy sources at temperature levels as close to the actual demand temperature for heating and cooling of connected end-users as possible. There are both similarities and differences between these networks and relevant technologies can co-exist. In the more well-established 4G definition, supply temperatures are a maximum of about 60°C for heating and below [1]. As a subcategory concept, depending on definition, bi-directional ultra-low temperature district heating with supply temperatures at 50°C and below are also used to refer to 5G networks [1]. Some networks operate at near-ambient and ambient temperatures with different network-substation configurations. For district heating and cooling networks operating at 10-30°C , thermal grid losses can be about two-thirds less over 3G networks while requiring extra electrical energy for driving the pumps in the network distribution and substations [2].    

 

Overall, the new generation of district heating and cooling networks is contextualised within smart energy systems where smart thermal grids support higher penetrations of renewable energy sources in the energy system [3]. Smart thermal grids also include large-scale heat pumps that are powered by excess renewable power from intermittent energy sources of solar and wind that would otherwise be curtailed [4]. The ability to integrate low and/or ultra-low temperature renewables and waste heat from multiple sources with or without booster heat pumps defines a central aspect of the new generation of district heating and cooling networks (also see Figure 1 and a complementary factsheet on “Technologies and applications for low/high temperature heat recovery in district heating”). In addition, the new generation of district heating and cooling networks require buildings that are compatible with using low or ultra-low temperature district heating and high-temperature district cooling. This will require building renovation, if not sufficiently compatible, or booster heat pumps. Locally, solutions can be directed to also addressing energy poverty in the urban context and raising thermal comfort. Seasonal thermal storage can support the performance of new generation district heating and cooling networks, including aquifer or borehole thermal energy storage that can provide long-term thermal energy storage [1]


Figure 1. Generations of district heating and cooling networks with 4G covering both low and ultra-low temperature district heating networks. Low-temperature refers to supply temperatures of about 50-60°C and maximum of 70°C for heating. Ultra-low temperature refers to supply temperatures below 50°C for heating, overlapping with 5G networks [1]. Two options that relate to another solution factsheet for heat recovery from data centers and supermarkets are marked.   


Technically, different configurations of district heating and cooling networks can lead to different efficiencies, flexibilities, and integration of renewable energy and waste energy sources [5]. As a representative comparison, Table 1 provides an overview of the typical technical specifications for district heating and cooling networks that are labelled as 5G. For example, some have both central and distributed designs for the shared thermal source operating at fixed or variable system temperatures and single and/or two pipe distribution systems with or without pipe insulation and thermal storages. It is common for heat pumps to be placed in substations or the side of end-users in buildings with prosumers. This can minimize upfront investment cost for utilities while potentially increasing the initial investment for the end-users. 
 

New generation district heating and cooling networks are envisioned to be more flexible in the way energy is exchanged, not relying on the central provision of heat and cold in part or whole, and with diverse connections to the network. A much more specialised form of new generation district heating and cooling networks is defined based on thermal energy supply grids using water or brine as a carrier medium that operates at temperatures close to the ground temperature and is supported by hybrid substations and water source heat pumps [6]. Yet different definitions for the same concept can often overlap, including bi-directional low temperature networks and even anergy networks [6].  Networks can also involve free-floating network temperatures with bi-directional and decentralised energy flows and active substations with prosumers. 

 

Table 1. Technical specifications of district heating and cooling networks labelled with the 5G concept (adapted from [1]

Supply Tempera- ture ( T ) 

Shared thermal source design 

Distribution system 

Pipe insulation 

System temperatures 

Thermal storages 

Ref. 

Central 

Distributed 

Self-balanced 

Single pipe 

Two pipe 

≥ Three pipes 

Yes 

No 

Fixed 

Variable 

Short term 

Long term 

T < 50°C 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[8] 

 

 

 

 

T < 40°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[9] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] 

 

 

 

 

T < 30°C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[17] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[18] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[19] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[20] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[21] 

 

 

 

 

Ground Temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[23] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[24] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[25] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[26] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[28] 

Figure 2. Zoomed-in urban area as an example of the heat demand densities mapped across Europe in the Pan-European Thermal Atlas (Peta) [29]. The new generation of district heating and cooling networks will be developing in these contexts.  

In this collection

Grey water treatment (including Nature Based Solutions) and reuse

Greywater is the wastewater generated in households or office buildings without serious contaminants, such as water from baths, sinks and washing machines. Greywater can be separated from blackwater (water from toilets or kitchens) and then treated on-site for direct reuse in toilets recharge or irrigation. Greywater is a relevant secondary source of water and nutrients. Many studies have analysed the environmental, economic, and energetic benefits of the reuse of greywater [1][2][6][7]. Greywater treatment systems can be introduced in new buildings or in existing buildings with retrofitting measures. There are different greywater treatment systems: diversion and filtration, diversion and treatment (using chemicals), or nature-based solutions (NBS). 

 

Traditional greywater treatment 

Greywater treatment by mechanical systems is typically based on filtration or treatment with chemicals. In filtration, the aim is to remove impurities using filters, with typically a few or several filters in a row in order to guarantee good results. In a purifying process done with chemicals, the aim is to add chemicals that bind impurities, which are then removed from the water, for example, by filters. The mechanical treatment can start with a settlement tank, where coarse particles settle in the bottom of the tank and are then removed. After that, the greywater flows through filters, typically first gravel and sand and then biological filters like wood or peat. Last, if needed, ultraviolet light or chemicals are used to remove potential bacteria. 

Green roof and greywater treatment [7] 

 

Grey water recovery system [10] 

The first filter is a biofilter, which removes the fats and oil. The sand and gravel filter removes small particulates and other impurities. 

 

NBS-based greywater treatment 

Nature-based solutions (NBS) applications are typically constructed wetlands, green roofs, and green walls [1][2][3]. 

 

Several studies have shown that NBS-based greywater treatment has high removal performances [1][5], indicating the suitability of these systems in treating domestic greywater. Planning and design parameters should be carefully considered when implementing NBS; high residence time of water can be especially important for grey water treatment efficiency (see e.g., [1]). To optimize the removal processes in NBS, appropriate plant species and substrates (as growing material), optimal hydraulic parameters, and suitable operating conditions are needed.  

 

The decentralized process consists of several stages: (i) greywater separation, (ii) storage, (iii) treatment by innovative NBS as multi-level green walls/green façades, or by mechanical systems as multi-layer filters and activated carbon, and (iv) final disinfection using commercial O3/UV systems (Ozone and Ultraviolet).  

MATURITY:  

 

Some building-level solutions for grey water treatment and reuse (including nature-based) are commercially available, for example:  

 

  • Aqua Gratis is a technology to capture and reuse the bath and shower water for flushing toilets. The solution is at the stage of initial market commercialisation. The technology development of Aqua Gratis was funded by the EU

  • REDI gives a solution for single-family houses, where the treated greywater can be used for watering the garden. 

  • Disinfection can be done with commercially available solutions, e.g. with ozone and ultraviolet (UV) light. 

 

Some examples of pilots are: 

 

  • Greywater treatment with nature-based solutions for indoor or outdoor modules in multi-level green walls/green façades was carried out in Houseful. The project tested also ozone and ultraviolet light for disinfection.  

  • Water management systems and how to monitor and collect water condition information for urban water management platforms were piloted in UNaLab. 

  • Green walls and constructed wetlands were piloted in NAWAMED, with a focus on grey water treatment from a public building, a parking area, and a refugee camp. 

  • A service model for grey water treatment with NBS was tested in Houseful. The service model considers a leasing contract and a payment fee per m3 of water treated and reused. 

 

The nature-based grey water systems have been tested in a rather short period of time (e.g., some months to 1–2 years). Since the operating time of grey water treatment should be closer to 15-20 years, a further full-scale testing is still needed. [1]. 

Passive building design strategies: building orientation, passive heating and cooling

Passive building design means providing passive heating, passive cooling, and natural ventilation to maintain comfortable indoor conditions with no need for energy, by taking advantage of location (climate), orientation, massing, shading, material selection, thermal mass, insulation, internal layout and the positioning of openings to allow the penetration of solar radiation, daylight, and ventilation in the desired amounts [1–8]. When duly applied, passive design strategies are a designer’s first opportunity to increase a building’s energy efficiency, without adding much less front-end cost to a project as compared to active design strategies. Efficient passive design results in smaller heating and cooling loads (so that the building’s mechanical system – if any – can be downsized) and smaller electric loads for lighting through the use of daylighting design strategies.  

 

Beyond local climate, building orientation is a key aspect for passive design. The most energy-efficient designs are facing south or north to allow better solar energy management and better quality of daylighting. Building shape is also very relevant in the design, as an elongated and narrow plant (with south or north facing façade) allows for more of the building to be receive daylight. Shading strategies properly combined with other passive design strategies are also required, especially in hot climates [9,10]. Since the main difficulty in designing natural ventilation systems driven by buoyancy and wind is the simultaneous estimation of ventilation airflows and indoor temperatures, solar chimneys are used [11,12]. A solar chimney is a vertical shaft utilizing solar energy to enhance natural ventilation. 

 

Passive heating can be achieved by capturing the heat from the sun inside the building. Tweaking the window-to-wall ratio and the building exposure to the sun, all the while controlling for the thermal mass, heat flows and insulation allows to effectively store, distribute and retain the heat. The thermal mass defines the capacity to absorb, store and release heat. Heavyweight construction materials like concrete, brick and stone exhibit large thermal mass that can be used to effectively store the heat over peak hours and release it overnight. 

Passive building design. Figure from

 

Passive cooling is a set of design strategies to reduce heat gains and favour heat dispersion. Many methods exist and include using solar shadings as well as designing openings in such a way to allow good ventilation (such as solar chimneys). Shading can either be operable (external louvres, blinds, and deciduous trees) or fixed (e.g. eaves, overhangs, fences and evergreen trees). 

 

 '

Shading devices for north-facing openings. 

Figure from https://www.yourhome.gov.au/passive-design 

 

Passive design strategies are rated in different standards, such as PassivHaus (Passive House), BREEAM, LEED or WELL. 

 

The literature shows that today there are many net-zero, nearly-zero energy, and certified Passive House buildings worldwide, in different climate or geographic regions. Most are in Europe and North America, followed by New Zealand, Kore, Japan, China, and India [1]. Literature also shows that is it possible to achieve at least the Passive House energy standard of performance in all climate zones [13]

 

MATURITY:  

 

Although individual passive techniques are already commercial, their holistic implementation in buildings is still at TRL=4-6. 

Citizen Participation Platforms

E-participation [1][2][3][4][5] enables citizens to use digital technologies or platforms, e.g., combination of geographic information systems (GIS), Web 2.0 and mobile technologies (including video, mobile messaging and Internet access), for communication, engagement and deliberation on policy or planning challenges.  

 

Engagement and participation are vital tools in climate adaptation and environmental decision making as these entail increased community acceptance, support for climate actions, and provide new insights based on local knowledge [12]. Citizens can be consumers as well as producers of useful data for policy development and decision making (WeGovNow, Smarticipate, AI4PublicPolicy). 

 

There are multiple degrees of citizen participation ranging from passive, i.e., being simply informed, to responsive, i.e., contribute to consultation, to active, i.e., being fully empowered by having final decisions delegated to them (see Arnstein’s ladder [6]) [7]. In e-participation initiatives, both top-down (i.e., issues identified by public authority) and bottom-up (i.e., citizens led initiative) approaches can be applied. As multiple actors (i.e., different departmental units) are involved in the provision of e-participation, cross-organizational issues related to ownership and accountability may arise [3].  

 

Technologies supporting government processes (GovTech) can add great value to participatory processes (e.g., access to sensor kits, web portals and data), as shown by examples of Madrid (Decide Madrid), Bristol (Bristol Approach to citizen sensing e.g., air quality, solid fuel burning etc.) [7], and Brussels (Curieuzenair). E-participation is usually considered part of e-government [5]. 

 

E-Government (or Electronic-Government) [1][2][8] refers to the application of Information and Communication Technologies (ICT) to government functions and procedures with the objective to increase efficiency of government agencies, enhance delivery of public services, and facilitate low cost and faster public engagement with public authorities. A comparative survey [8] of global e-government performance of municipalities highlights the best e-governance practices. It uses five categories of measures: privacy and security, usability, content, service and citizen and social engagement. For citizen and social engagement category Shanghai, Auckland, Seoul, Madrid, Paris, and Lisbon are ranked top cities for year 2018-19. 

 

Open Governance [9] is about transparency of and access to government data and decision making process so that innovative forms of collaborative actions (i.e. bottom-up and top-down) can be applied to solve policy problems, raise awareness, increase public participation, change behaviour, promote e-democracy, and revolutionise traditional service provision [10][11]. It is closely associated with open government data that can provide new insights about issues and services as well as offers the opportunities to participate, comment and influence plans and policy agenda to foster greater citizen participation. 

 

 

E-participation solutions range from responding to planning e.g., top-down to bottom-up urban regeneration [Smarticipate] or policy challenge [WeGovNow] or reporting a local problem (e.g., Bristol’s FixMyStreet); or bottom-up budget planning (e.g., Helsinki’s participatory budgeting) or accessing open data (e.g., Hamburg’s Transparency portal).  

 

There are several e-participation initiatives where various ICT tools are used to deliver different public services. For instance,  

Cross border e-governance initiatives such as [ACROSS], [DE4A] and [GLASS] go beyond one city’s public administrative level (even at EU level and beyond [iKaaS]) and deal with cross-border interoperable, mobile [mGov4EU] and privacy-aware public services.  

MATURITY: 

 

Many e-government and e-participation tools are available at higher TRL and are already being used by municipalities for public services and e-participation, e.g., open source Consul platform is being used in 35 countries by 135 institutions; Similarly, Organicity tools are used for over 35 experiments in various cities

 

Some of the example solutions fall under validation and demonstration category such as DUET and Smarticipate.  

Comments ()

Authors

Tags

Climate resilienceBuildingEnergyIndustrySustainable fuelTechnology
Under license CC BY-NC-SA
This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.