Back to knowledge
JRC

Guarantee the energy saving/production in buildings 

Different service providers offer services to help customers improve their buildings energy performance. These are typically called energy service companies (ESCOs). They can help achieve energy savings by implementing energy-efficiency and renewable energy projects [e.g. Houseful]. Typically, the service is delivered through Energy Performance Contracting (EPC), a business model where the solution provider guarantees the performance and receives a performance-based remuneration from the client. The use of EPC in the public sector, and partially in industrial and commercial buildings, has been consolidating in the past few decades, whereas it is still not very common for residential buildings [7] [9]. 

 

Energy-saving measures implemented through EPC can be related to e.g., boiler and chiller systems, lighting, HVAC, roofing, insulation, windows and building management systems, as well as deep renovation [9]. ESCOs contracting models can differ, presenting various financing terms, repayment options and different allocation of risk between the service provider and the customer. Examples of EPC are provided in the projects STARDUST and STUNNING. 

Source:  OnePlace [11] 

 

One of the most common is the EPC Guaranteed Savings model, where the ESCO guarantees a certain level of energy savings to the client and takes on any eventual performance risk. In this case, the customer assumes the credit risk, obtaining a bank loan or using his own equity to repay the debt and the contractually determined fees to the ESCO for the duration of the contract. In this case, the customer will use the savings as repayment, and any savings exceeding the guarantees are split between the consumers and the ESCO according to contractual provisions. In case the energy savings were not sufficient to cover the debt, ESCOs would have the obligation to cover the difference [4][5]. Clients will actually start to benefit from energy and cost savings after the end of the contract. Countries with ESCOs that use this as the main financing model include Czech Republic, Denmark, Canada and Thailand [4]. For instance, in Denmark the municipality of Middelfart implemented energy saving measures in approximately 100 public buildings [13]. The contracted guaranteed savings were 21%, but the actual results have showed savings up to 24% of the total energy use. 

 

Another example is the EPC Shared Savings model, in which cost savings are split between the ESCO and the customer for the duration of the contract, based on a pre-determined percentage. The ESCO assumes the financial risk, by covering investment and implementation costs, as well as the technical risk – which can be of value to the client as it avoids the investment costs [4][5]. This model requires the ESCO to be creditworthy and to have sufficient revenue streams to pay back the loan. Examples of countries where this model is used are India, Chile, and Greece [4].  

Source: STUNNING project, funded by H2020 (2017-2019) 

 

SuperESCOs are governmental entities created to serve the public sector, develop the capacity of private ESCOs, and facilitate project financing. Existing programmes designed to engage clients with ESCOs –  such as energy audits programs, rebates, direct install programs, demand side management bidding, or standard offer approach – rarely provide sufficient funding for implementation costs such as engineering, procurement and installation costs. As energy efficiency projects do not seem to be an investment priority for many businesses, even those with financial means, supporting ESCOs creditworthiness is important to increase the adoption of energy-saving measures [4]. Super ESCOs are typically bigger companies or energy utilities [13]. 

 

ESCOs services can produce even more interesting results when combined with active buildings. Active buildings typically have a passive design, smart monitoring capability, can generate renewable energy on-site as well as store it, can integrate electric vehicles, and can intelligently manage integration in micro-grids and national grids [1]. Active building Energy Performance Contracting (AEPC) builds on the EPC model by exploiting energy demand-response systems and demand-side flexibility. This means that active consumers are able to change energy consumption patterns in response to market signals, such as prices or incentives, or depending on their self-generation and storage assets [8]. The building can thus adapt the use of energy in the slots where energy is most available and cheaper. In addition, the building can feed the excess energy to the grid when self-generated energy surpasses building consumption. AEPC usually targets cluster of buildings, which makes it more attractive to the ESCO companies and allows application in the residential sector. For instance, in Belgium [AmBIENCEe], active energy performance contracting has been piloted, through the dynamic simulation of the building behaviour and the setting of active control targets [12]. 

 

Additional information can be found in a European Commission’s Joint Research Centre (JRC) ESCO library, including different financial models [10]. 

 

MATURITY:  

 

Energy service guarantee providers (ESCO) are commercially available at building level systems, whereas at district or area level the solutions are not that common. However, ESCOs are mostly focussing on commercial/public buildings. Some examples of ongoing projects are: 

 

  • In Sweden, the County Council of Östergotland replaced oil boilers with heat pump and oil-fired boilers with pellets [14]. 

  • In Austria, a school was energy renovated with room level control systems [14]. 

  • In the UK, the University of Sheffield was renovating heat distribution systems and upgrading air-handling units [14]. 

 

The traditional EPC model has been successfully implemented for decades, focussing especially on commercial and public buildings [9]. 

 

The APEC model [e.g. AmBIENCe] is more recent, and attempts are made to extend the benefits of EPC to the residential sector by operating on clusters of buildings. Application to singular residential units is still sporadic [9]. This is due to the fact that that commercial and public buildings represent a more attractive business opportunity, having higher energy consumption and, consequently, higher potential energy savings. 

In this collection

Grey water treatment (including Nature Based Solutions) and reuse

Greywater is the wastewater generated in households or office buildings without serious contaminants, such as water from baths, sinks and washing machines. Greywater can be separated from blackwater (water from toilets or kitchens) and then treated on-site for direct reuse in toilets recharge or irrigation. Greywater is a relevant secondary source of water and nutrients. Many studies have analysed the environmental, economic, and energetic benefits of the reuse of greywater [1][2][6][7]. Greywater treatment systems can be introduced in new buildings or in existing buildings with retrofitting measures. There are different greywater treatment systems: diversion and filtration, diversion and treatment (using chemicals), or nature-based solutions (NBS). 

 

Traditional greywater treatment 

Greywater treatment by mechanical systems is typically based on filtration or treatment with chemicals. In filtration, the aim is to remove impurities using filters, with typically a few or several filters in a row in order to guarantee good results. In a purifying process done with chemicals, the aim is to add chemicals that bind impurities, which are then removed from the water, for example, by filters. The mechanical treatment can start with a settlement tank, where coarse particles settle in the bottom of the tank and are then removed. After that, the greywater flows through filters, typically first gravel and sand and then biological filters like wood or peat. Last, if needed, ultraviolet light or chemicals are used to remove potential bacteria. 

Green roof and greywater treatment [7] 

 

Grey water recovery system [10] 

The first filter is a biofilter, which removes the fats and oil. The sand and gravel filter removes small particulates and other impurities. 

 

NBS-based greywater treatment 

Nature-based solutions (NBS) applications are typically constructed wetlands, green roofs, and green walls [1][2][3]. 

 

Several studies have shown that NBS-based greywater treatment has high removal performances [1][5], indicating the suitability of these systems in treating domestic greywater. Planning and design parameters should be carefully considered when implementing NBS; high residence time of water can be especially important for grey water treatment efficiency (see e.g., [1]). To optimize the removal processes in NBS, appropriate plant species and substrates (as growing material), optimal hydraulic parameters, and suitable operating conditions are needed.  

 

The decentralized process consists of several stages: (i) greywater separation, (ii) storage, (iii) treatment by innovative NBS as multi-level green walls/green façades, or by mechanical systems as multi-layer filters and activated carbon, and (iv) final disinfection using commercial O3/UV systems (Ozone and Ultraviolet).  

MATURITY:  

 

Some building-level solutions for grey water treatment and reuse (including nature-based) are commercially available, for example:  

 

  • Aqua Gratis is a technology to capture and reuse the bath and shower water for flushing toilets. The solution is at the stage of initial market commercialisation. The technology development of Aqua Gratis was funded by the EU

  • REDI gives a solution for single-family houses, where the treated greywater can be used for watering the garden. 

  • Disinfection can be done with commercially available solutions, e.g. with ozone and ultraviolet (UV) light. 

 

Some examples of pilots are: 

 

  • Greywater treatment with nature-based solutions for indoor or outdoor modules in multi-level green walls/green façades was carried out in Houseful. The project tested also ozone and ultraviolet light for disinfection.  

  • Water management systems and how to monitor and collect water condition information for urban water management platforms were piloted in UNaLab. 

  • Green walls and constructed wetlands were piloted in NAWAMED, with a focus on grey water treatment from a public building, a parking area, and a refugee camp. 

  • A service model for grey water treatment with NBS was tested in Houseful. The service model considers a leasing contract and a payment fee per m3 of water treated and reused. 

 

The nature-based grey water systems have been tested in a rather short period of time (e.g., some months to 1–2 years). Since the operating time of grey water treatment should be closer to 15-20 years, a further full-scale testing is still needed. [1]. 

Passive building design strategies: building orientation, passive heating and cooling

Passive building design means providing passive heating, passive cooling, and natural ventilation to maintain comfortable indoor conditions with no need for energy, by taking advantage of location (climate), orientation, massing, shading, material selection, thermal mass, insulation, internal layout and the positioning of openings to allow the penetration of solar radiation, daylight, and ventilation in the desired amounts [1–8]. When duly applied, passive design strategies are a designer’s first opportunity to increase a building’s energy efficiency, without adding much less front-end cost to a project as compared to active design strategies. Efficient passive design results in smaller heating and cooling loads (so that the building’s mechanical system – if any – can be downsized) and smaller electric loads for lighting through the use of daylighting design strategies.  

 

Beyond local climate, building orientation is a key aspect for passive design. The most energy-efficient designs are facing south or north to allow better solar energy management and better quality of daylighting. Building shape is also very relevant in the design, as an elongated and narrow plant (with south or north facing façade) allows for more of the building to be receive daylight. Shading strategies properly combined with other passive design strategies are also required, especially in hot climates [9,10]. Since the main difficulty in designing natural ventilation systems driven by buoyancy and wind is the simultaneous estimation of ventilation airflows and indoor temperatures, solar chimneys are used [11,12]. A solar chimney is a vertical shaft utilizing solar energy to enhance natural ventilation. 

 

Passive heating can be achieved by capturing the heat from the sun inside the building. Tweaking the window-to-wall ratio and the building exposure to the sun, all the while controlling for the thermal mass, heat flows and insulation allows to effectively store, distribute and retain the heat. The thermal mass defines the capacity to absorb, store and release heat. Heavyweight construction materials like concrete, brick and stone exhibit large thermal mass that can be used to effectively store the heat over peak hours and release it overnight. 

Passive building design. Figure from

 

Passive cooling is a set of design strategies to reduce heat gains and favour heat dispersion. Many methods exist and include using solar shadings as well as designing openings in such a way to allow good ventilation (such as solar chimneys). Shading can either be operable (external louvres, blinds, and deciduous trees) or fixed (e.g. eaves, overhangs, fences and evergreen trees). 

 

 '

Shading devices for north-facing openings. 

Figure from https://www.yourhome.gov.au/passive-design 

 

Passive design strategies are rated in different standards, such as PassivHaus (Passive House), BREEAM, LEED or WELL. 

 

The literature shows that today there are many net-zero, nearly-zero energy, and certified Passive House buildings worldwide, in different climate or geographic regions. Most are in Europe and North America, followed by New Zealand, Kore, Japan, China, and India [1]. Literature also shows that is it possible to achieve at least the Passive House energy standard of performance in all climate zones [13]

 

MATURITY:  

 

Although individual passive techniques are already commercial, their holistic implementation in buildings is still at TRL=4-6. 

Citizen Participation Platforms

E-participation [1][2][3][4][5] enables citizens to use digital technologies or platforms, e.g., combination of geographic information systems (GIS), Web 2.0 and mobile technologies (including video, mobile messaging and Internet access), for communication, engagement and deliberation on policy or planning challenges.  

 

Engagement and participation are vital tools in climate adaptation and environmental decision making as these entail increased community acceptance, support for climate actions, and provide new insights based on local knowledge [12]. Citizens can be consumers as well as producers of useful data for policy development and decision making (WeGovNow, Smarticipate, AI4PublicPolicy). 

 

There are multiple degrees of citizen participation ranging from passive, i.e., being simply informed, to responsive, i.e., contribute to consultation, to active, i.e., being fully empowered by having final decisions delegated to them (see Arnstein’s ladder [6]) [7]. In e-participation initiatives, both top-down (i.e., issues identified by public authority) and bottom-up (i.e., citizens led initiative) approaches can be applied. As multiple actors (i.e., different departmental units) are involved in the provision of e-participation, cross-organizational issues related to ownership and accountability may arise [3].  

 

Technologies supporting government processes (GovTech) can add great value to participatory processes (e.g., access to sensor kits, web portals and data), as shown by examples of Madrid (Decide Madrid), Bristol (Bristol Approach to citizen sensing e.g., air quality, solid fuel burning etc.) [7], and Brussels (Curieuzenair). E-participation is usually considered part of e-government [5]. 

 

E-Government (or Electronic-Government) [1][2][8] refers to the application of Information and Communication Technologies (ICT) to government functions and procedures with the objective to increase efficiency of government agencies, enhance delivery of public services, and facilitate low cost and faster public engagement with public authorities. A comparative survey [8] of global e-government performance of municipalities highlights the best e-governance practices. It uses five categories of measures: privacy and security, usability, content, service and citizen and social engagement. For citizen and social engagement category Shanghai, Auckland, Seoul, Madrid, Paris, and Lisbon are ranked top cities for year 2018-19. 

 

Open Governance [9] is about transparency of and access to government data and decision making process so that innovative forms of collaborative actions (i.e. bottom-up and top-down) can be applied to solve policy problems, raise awareness, increase public participation, change behaviour, promote e-democracy, and revolutionise traditional service provision [10][11]. It is closely associated with open government data that can provide new insights about issues and services as well as offers the opportunities to participate, comment and influence plans and policy agenda to foster greater citizen participation. 

 

 

E-participation solutions range from responding to planning e.g., top-down to bottom-up urban regeneration [Smarticipate] or policy challenge [WeGovNow] or reporting a local problem (e.g., Bristol’s FixMyStreet); or bottom-up budget planning (e.g., Helsinki’s participatory budgeting) or accessing open data (e.g., Hamburg’s Transparency portal).  

 

There are several e-participation initiatives where various ICT tools are used to deliver different public services. For instance,  

Cross border e-governance initiatives such as [ACROSS], [DE4A] and [GLASS] go beyond one city’s public administrative level (even at EU level and beyond [iKaaS]) and deal with cross-border interoperable, mobile [mGov4EU] and privacy-aware public services.  

MATURITY: 

 

Many e-government and e-participation tools are available at higher TRL and are already being used by municipalities for public services and e-participation, e.g., open source Consul platform is being used in 35 countries by 135 institutions; Similarly, Organicity tools are used for over 35 experiments in various cities

 

Some of the example solutions fall under validation and demonstration category such as DUET and Smarticipate.  

Comments ()

Authors

Tags

Circular economyClimate resilienceAnalytics and modellingBuildingEnergyMaterialsTechnology
Under license CC BY-NC-SA
This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.