NET ZERC EU MISSION PLATFORM

CLIMATE NEUTRAL AND SMART CITIES

WORKSHOP: Small Modular Reactors (SMRs) for district heating

22 October 2025

Welcome introduction

Philippe Froissard

European Commission, the Directorate General for Research and Innovation

Head of the "Strategy, Policy Coordination and Urban Transitions"

Get in touch with NetZeroCities!

@NetZeroCitiesEU

NetZeroCities

NetZeroCitiesEU

NetZeroCities EU

www.netzerocities.eu

hello@netzerocities.eu

Net Zero Cities

Small Modular Reactors (SMRs) for District Heating

Brussels, 22 October 2025

Domenico ROSSETTI di V. and Angelgiorgio IORIZZO Unit C.4–Euratom Research

Political, technological and licensing issues

- MS debate on nuclear, Alliance of MS, Russian invasion?
- Large vs Small Reactors?
- EU sovereignty vs fast deployment (EU designs vs US and UK ones)?
- Results of the on-going IPCEI discussions on nuclear?
- Standardized licensing of SMRs and (long) safety authorities procedures?

Small Modular Reactors (SMRs)

- Small: up to 300 MWe (less than 10 MWe = micro modular reactors MMRs)
- Modular: Modularity-series production-simple design
- Reactors: Nuclear power reactors

The reduced size allows:

- New and enhanced inherently safety features.
- Series deployment that will only be realised if SMRs can take advantage of a global supply chain and global customer basis, which require a streamlined multinational licensing framework and co-ordinated international codes and standards for the manufacture of systems and components.

3

Designs and technologies of SMRs

- Light Water (LW-SMRs): the most mature designs, deployable in the 2030's
- Advanced Modular Reactors (AMR) GEN IV, i.e. Molten Salt Reactors, Gas Cooled Reactors, Liquid Metal Cooled Reactors (Sodium and Lead) able to close the nuclear fuel cycle, expected in the 2040's
- "Maturity of the design": knowledge and level of preparedness-readiness of regulatory bodies to examine licensing demands of given technology

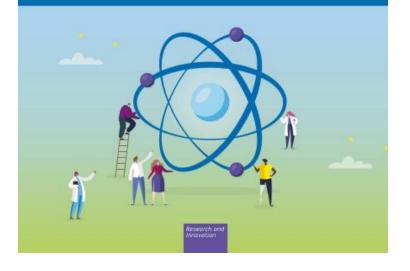
Research & Innovation

European policy developments and Euratom R&I initiatives

- NZIA, CID, Affordable Energy AP, IPCEI
- Europe's 2040 climate target
- EU SMRs Industrial Alliance
- Electricity market design
- Revamped SET-Plan
- Green taxonomy

When we speak about our energy, we have to produce more of our own energy – more renewables, more nuclear, more efficiency

Europe needs to be active because [it] cannot be behind the curve on modular reactors



Euratom Research in Action and Opportunities for Europe

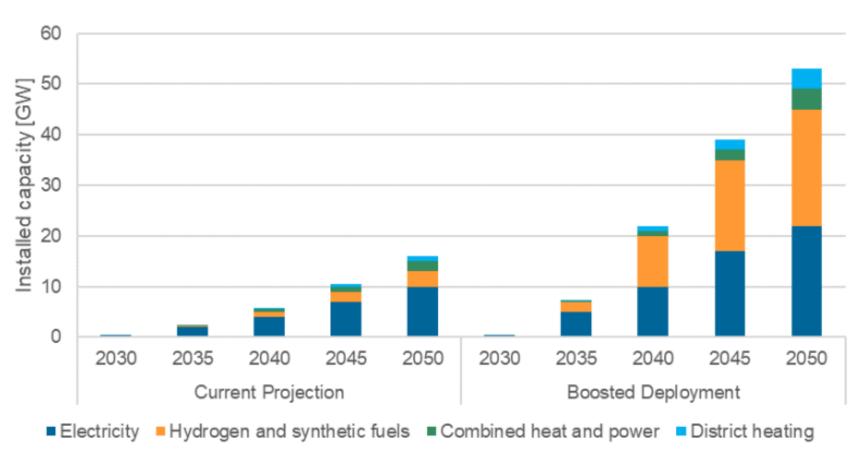
EU Strategic Autonomy and the Future Energy Systems

EU Small Modular Reactors (SMRs) Declaration

Strategic Action Plan 2025-2029

Towards the development and deployment of SMRs in Europe

European Industrial Alliance on SMRs 2025

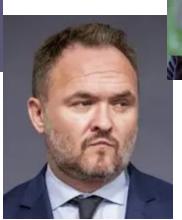

SMR potential

- Improved safety features, such as passive safety systems
- Better financing options reduced construction schedules
- Lower investment needs
- Fewer components
- Replacing old coal power plants
- Complementing & facilitating the penetration of RES
- Being flexibly used for: District heating; Generation of process heat for energy-intensive industries; Desalination; Production of hydrogen

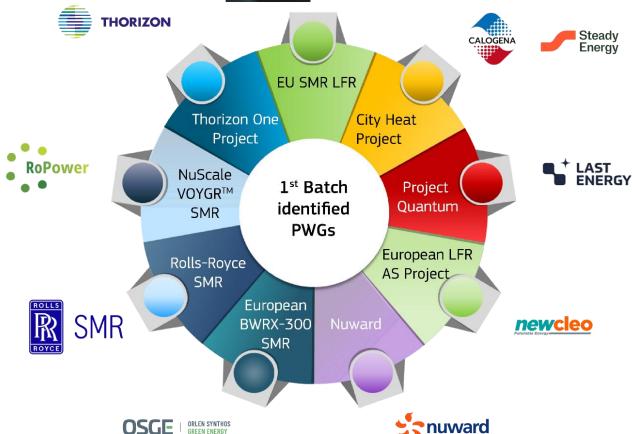
SMRs deployment scenario in the EU

European Industrial Alliance on SMRs

The main objective of the European Industrial Alliance on SMRs is to facilitate and accelerate the development, demonstration, and deployment of the first SMRs projects in Europe in the early 2030s, by assisting emerging SMRs projects to reach the demonstration and deployment phase.


European Industrial Alliance on Small Modular Reactors

Previous and current Commissioners


Research & Innovation

European | A on SMRs

European IA on SMRs – TWGs

TWG1: Industrial

Chair: N.Rega (CEFIC) Vice Chair: A.Georgescu (Eurometaux)

Applications

TWG2: Technology and R&D&I

Chair: P.Baeten (SCK-CEN) Vice Chair: M.Pasquet (Framatome)

> **TWG3: Supply** Chain

Chair: V. Ramany (EDF) Vice Chair: M.Tacconelli (Walter Tosto)

TWG4: Skills

Chair: M.E. Ricotti (POLIMI, CIRTEN) Vice chair: O. Bard (GIFEN). June 2024 October 2024

. . .

TWG5: Public **Engagement**

Chair: : M. Martell (GMF) Vice Chair: M. Ilnicki (SGE)

> TWG6: Nuclear Safety & Safeguard

Chair: O.Kymäläinen (FORTUM) Vice Chair: R.Arsene (Nuclearelectrica)

TWG7: Fuel cycle & waste management

Chair: H.Baars (URENCO) Vice Chair: T.Louvet (ORANO)

TWG8: Financing

Chair: M.Jedlička (ČEZ) Vice Chair: C.Töpfer (Vattenfall)

SMRs Hot Topics (OECD/NEA)

Hot topic 1 - SMR siting plans: proximity to population and industrial processes

Hot topic 2 - Design maturity and confidence prior construction

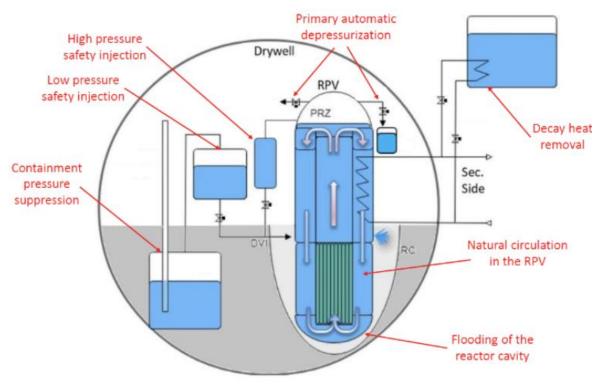
Hot topic 3 – Safety considerations for batteries and micro-reactors

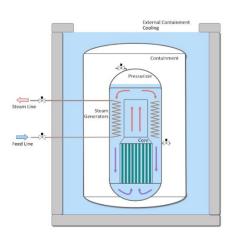
Hot topic 4 - Reliability of passive systems

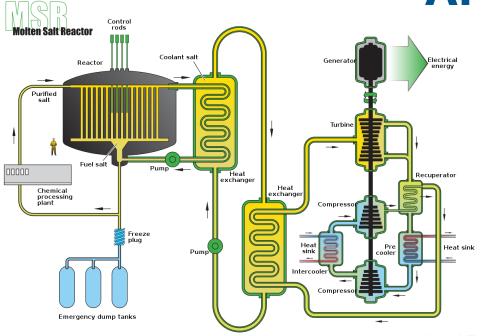
Hot topic 5 – Demonstration of Safety Case

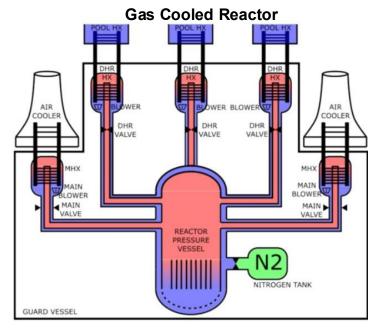
Small Modular Reactors (LW-SMRs and AMRs) European projects

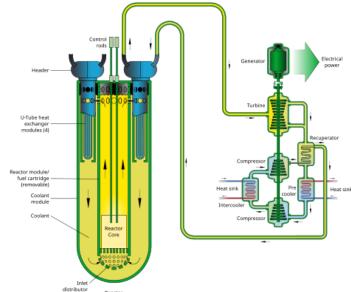
Euratom SMR projects



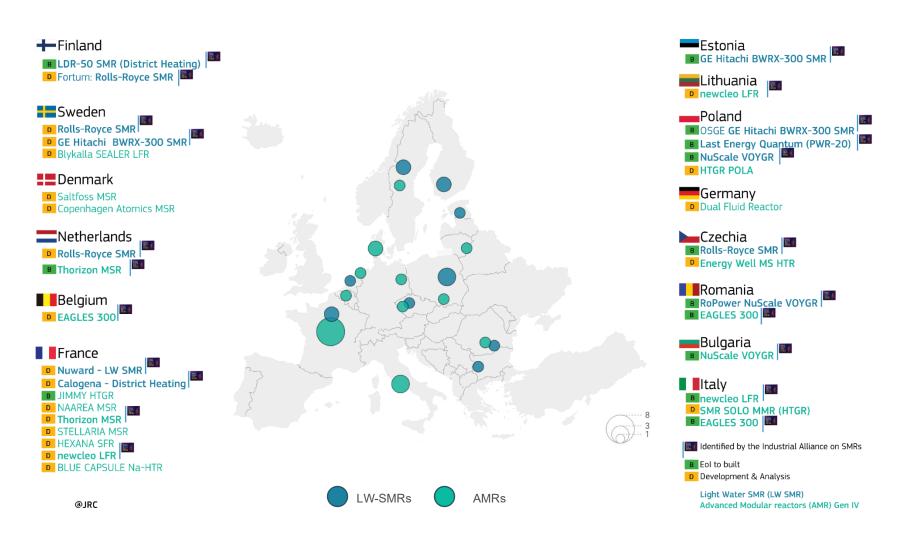



LW-SMRs

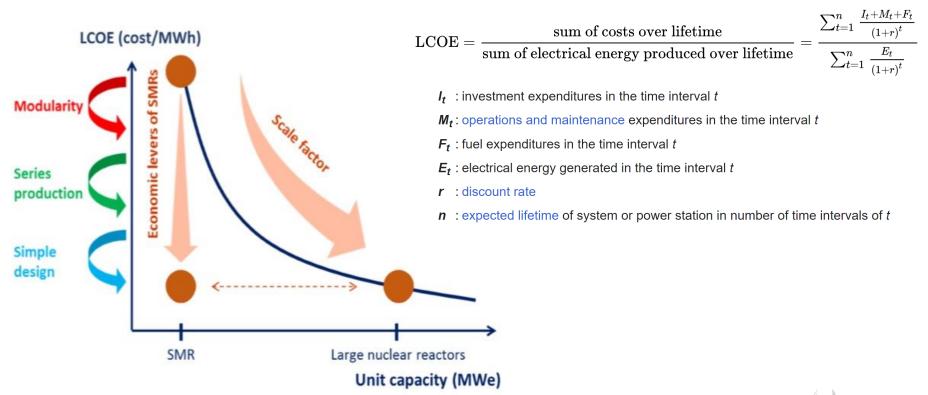




AMRs



Lead Fast Reactor


SMR projects in EU 27 (July 2025)

[Table from JRC]

SMRs Levelized Cost Of Electricity (LCOE)

measure of the average net present cost of electricity generation for a generating plant over its lifetime

Focus on TANDEM

Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix

TANDEM

C. Schneidesch (Engie-Tractebel, Belgium)

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Atomic Energy Community ('EC-Euratom'). Neither the European Union nor the granting authority can be held responsible for them.

Workshop on Small Modular Reactors (SMRs) for District Heating, online, October 22, 2025.

The energy trilemma

The EU ambitious targets to achieve the decarbonization are driven by the energy trilemma (environmental sustainability, energy security, energy equity)

The **ENERGY** trilemma The decarbonized energy mix must be diversified to be robust and versatile

Energy market trends

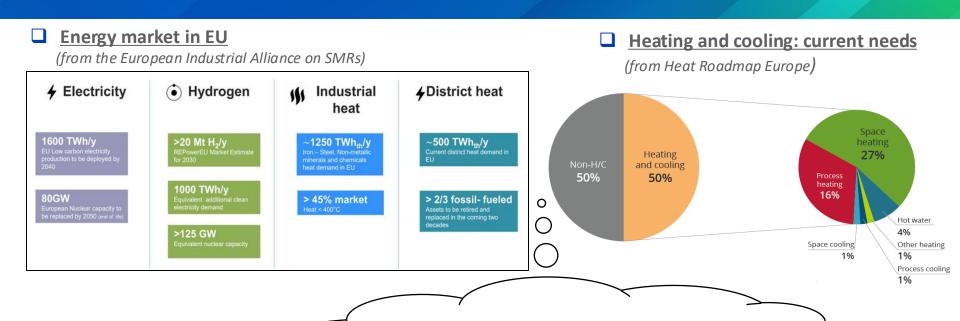
Decarbonized energy production CO₃

.... Which also drives the energy market

- Variable renewable energy
- Decentralized energy production
- Emerging sectors/countries (*)

Security of supply

Security of supply and sovereignty are strategic features

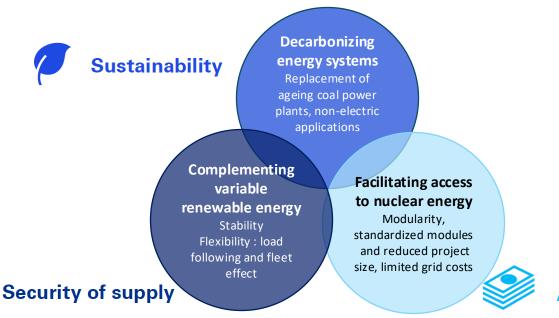


Affordability

The total system costs must be such that it allows competitiveness of the industry

Analysis of the energy context: EU energy needs

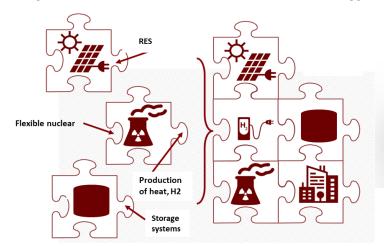
The demand for low-carbon heat is enormous!


Order of magniture: EPR2: ~14 TWhe/y

or ~40 TWhth/y

Nuclear for energy transition

Nuclear power generation technologies and SMRS in particular offer overarching carbon-neutral opportunities to be cornerstones of tomorrow's energy ecosystems

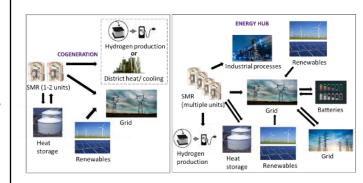


TANDEM project to support the safe and cost-effective integration of SMRs within low-carbon hybrid energy systems

CWn scale had storage

How can all low-carbon energy sources, thermal and electrical storage systems and the production of energy carriers **be combined to meet the energy demand** in the future EU sustainable, reliable and affordable energy mix?

ndustrial zone


TANDEM project (2022-2025)

Website: https://tandemproject.eu/

TANDEM: Small Modular ReacTor for a European sAfe aNd Decarbonized Energy Mix

High-level objectives:

- Assess the **safety compliance** of **SMRs** to be **integrated** in the future European energy mix
- Provide **guidance in a deployment perspective** for the future integration of SMRs and AMRs into well-balanced hybrid energy systems
- **Create an enabling environment** for the development of hybrid energy systems based on SMRs and AMRs

Ambitions of TANDEM:

- **Promote versatile SMRs integrated within hybrid energy systems** as reliable, resilient, and affordable clean energy options in Europe
- **Become a pioneering initiative** in gathering efforts and expertise on the development of SMR integration within hybrid energy systems in Europe

Overall methodology implemented in TANDEM

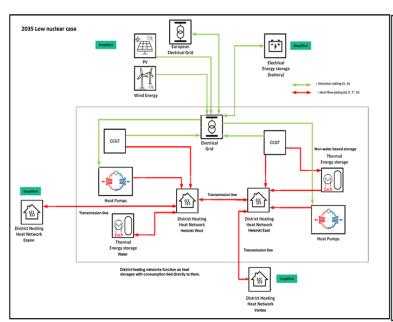
Identification of Hybrid Energy Systems (HES) incorporating SMRs to be used as demonstration cases

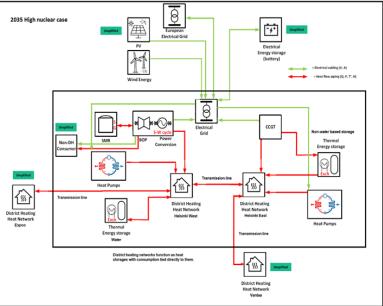
Development and implementation of tools for HES-SMRs assessment

Safety and feasibility studies for HES-SMRs assessment
Citizen engagement cases

Building enabling environment for future projects and initiatives

Scientific and industrial collaboration


Approaches for public acceptance and stakeholders awareness



Main TANDEM outcomes for district heating application (1/3)

Website: https://tandemproject.eu/

☐ Definition of two use-cases: 1/ Metropolitan area of Helsinki in Finland and 2/ Moravian-Silesian region in the Czech Republic

Main TANDEM outcomes for district heating application (2/3)

Website: https://tandemproject.eu/

☐ Results of the demonstration cases on SMR integration within hybrid energy systems:

Technical performances

- ✓ Nuclear reactors providing district heating network: not a new concept!
- ✓ Different SMR design working for heat-only production or cogeneration mode: choice of the design depends on the needs and the local context
- ✓ Benefit in term of flexibility for the energy supply (dispatchable energy)

Safety

✓ SMRs providing district heating: same safety perspective as SMRs producing only electricity

Techno-economics

✓ SMR economic viability possible for application in district heating

Environmental impact

✓ Minimization of CO2 emissions possible

Main TANDEM outcomes for district heating application (3/3)

Website: https://tandemproject.eu/

- ☐ Contribution to Citizen engagement: organisation of three workshops with citizen panels in Finland and the Czech Republic
- **☐** Synthesis of the project:
 - ✓ **Delivery of policy briefs**: on financing and economics, public acceptance, regulatory requirements and for policy-makers at different levels (European, national, local)
 - ✓ **Delivery technical recommendations** for the industrial and R&D communities
 - ✓ Importance of input data in the problem definition, cross-check and benchmarking are paramount
 - ✓ KPIs should include all components of the trilemma and no only economical factors

TANDEM consortium

Belgium: nucleareurope TRACTEBEL

Germany: CRS

POLITECNICO

18 partners from 8 European countries, composed of:

universities, RTOs, TSOs, industrials and engineering organizations

Get in touch for more information:

Christophe Schneidesh and Claire Vaglio-Gaudard

WP1 leader and Coordinator of the TANDEM project

christophe.shcneidesch@tractebel.engie.com / claire.vaglio-gaudard@cea.fr

https://tandemproject.eu/

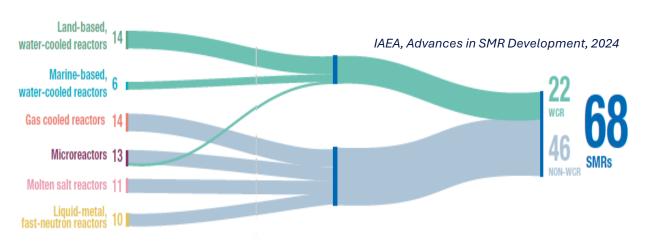
https://www.linkedin.com/company/tandem-project-eu/

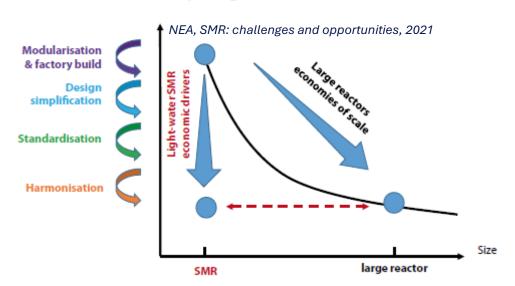
EASI-SMR: Ensuring Assessment of Safety Innovations for SMR

SMR for district heating workshop – October 22, 2025 – Online

Nicolas Sobecki (EDF, France)
Coordinator of the project

FUNDED BY





SMR development worldwide

Construction costs (USD/kW_e)

SMR:

- Produce baseload and flexible low carbon electricity and heat
- Integrate nuclear technologies into new industrial applications and hybrid energy systems
- Suitable to smaller grids and easier to finance

LW-SMR: most mature technologies

There are still short term R&D efforts required to enable design licensing

Accelerate commercial deployment of LW-SMRs in the EU by 2030

R&D gaps for LW-SMRs

Advanced safety systems

- Need of experimental data
- Validation of safety analysis codes
- Performance and reliability demonstration
- **Human factor** adaptation

Modularisation

- Integrate modularisation into engineering standards
- **Interface** standardisation
- Advanced construction techniques (SCS,...) and its qualification
- **Transportation logistics**

Additive manufacturing

- Process and Materials qualification
- Repair and maintenance
- Adapt reactor component designs for manufacturability
- **Size** limitation
- **Regulatory** acceptance

Key innovative research areas to support SMRs in development in the EU

Digitalisation

- · Develoment of digital twins
- Developent of simulators
- Advanced maintenance development
- **Cybersecurity** of advanced contol systems

Non-electrical applications

- Process integration and coupling
- Economic and regulatory frameworks
- Steam tapping safety and performance

- Advanced technological fuel: Accident **Tolerant Fuel (ATF)**
- Validation of performance and safety simulation codes: uncertainty quantification & experimental data
 - Waste management: compatibility with

Objectives of the EASI-SMR Project

Strategic Alignment with European Industrial Alliance on SMRs Objectives

- Activity program inspired by the EU SMR pre-Partnership R&D&I roadmap
- Early R&D application case of the Alliance, funded by the Euratom Research and Training Programme

3 HIGH-LEVEL OBJECTIVES:

- Ensure the highest level of the safety of LW SMRs based on passive systems
- Assess the safety impact of LW-SMRs designs' specificities
- Address regulatory and societal challenges towards the deployment of SMRs in Europe

General overview of the EASI-SMR project

Ensuring Assessment of Safety Innovations for SMR

- Project start: 1 September 2024
- Project duration: 48 months
- **Budget:** 23,6M€
- HORIZON-EURATOM-2023 funding: 15M€
- Organization leading the project: EDF
 - Coordination : nicolas.sobecki@edf.fr
- Partners: 38 partners from 16 countries
- For further information:
 - Browse our website: easi-smr.eu
 - Follows us on LinkedIn: @easi-smr

Industrial designs of reference

NUWARD SMR nuward SMR

LDR-50

- Developed by **the number of the property of th**
- Technical features:
 - Based on PWR technology
 - 400MWe + 100MWth in cogeneration mode
 - Load following as a complementary solution to renewable energy sources,
 - Supply remote municipalities and energy-intensive industrial sites.
 - Heat & electricity cogeneration, hydrogen production, district heating and water desalinization

- Developed by Steady , a spin-off company from VTT
- Technical features:
 - District heating reactor
 - Maximum heating power 50 MWth per reactor module
 - Low temperature and pressure (150°C and 0.8MPa)
 - Liquid/liquid heat exchanger
 - Reactor hall constructed underground

Overview of the project

WP1: Transverse topics for LW-SMR acceptability and licensing

- Licensing, waste management, stakeholder engagement
- Co-location of SMR
- Hybrid energy system analysis

 SETF Thermohydraulic experiments on passive systems phenomena

VTT

WP8: Communication, Education and Training

- Dissemination of the project results
 - 4 workshops and 2 schools

WP7: Advanced core physics studies of boron-free SMR-cores

- Neutronic calculation of boronfree core evolution
- Multiphysics transient calculations

WP9: Project coordination

WP6: SG Mock-up by additive manufacturing techniques

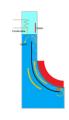
- Mockups design and fabrication
- Mechanical, geometrical and chemical characterization of the mockups

WP3: Code validation, scaling

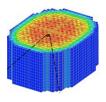
- Code benchmarks
- Definition of an integral facility test

WP4: Reliability of passive systems

- PSA and DSA of passive systems
- Human reliability and Multi-units



WP5: Human & Organizational Factors


- Simulation of multi-units SMR operation with passive systems
- Supply-chain, cybersecurity analysis, SMR maintenance

Expected impacts of the project

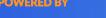
- Increasing knowledge on passive systems physics to improve their safety assessment.
- Establishing a qualification guideline of a SG made by additive manufacturing.
- Advancing methods and tools for LW-SMR core analysis to assure efficient and safe operation.
- Improving understanding of Human & organizational factors at stake in LW-SMRs operation.
- Supporting a shared and coherent approach among regulators regarding safety requirements for LW-SMRs.
- Improving acceptance and understanding of LW-SMRs in the EU.

Partners

Funding acknowledgment

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Atomic Energy Community ('EC-Euratom'). Neither the European Union nor the granting authority can be held responsible for them.

Thank you


Contact us: contact@easi-smr.eu
Join us on LinkedIn @easi-smr

R&D&I roadmap based on EU SMR pre-Partnership

CORE AND FUEL (INCL CRDM)

- Fuel assembly and reflector design
- Boron free core: use of burnable poisons, long term insertion of CR
- Accident tolerant fuels
- Critical heat flux performance evaluation
- Fuel, cladding limits and safety rules
- Innovative multiphysics and multiscale modeling and V&V

NSSS AND ITS INTERNALS

- Reactor internal hydraulics (incl vibrations)
- In-service inspection
- Specific components and materials (CRDM, pumps, CSG), advanced manufacturing

PASSIVE SAFETY SYSTEMS

- Lack of experimental data
- Validation of safety analysis codes
- Reliability: adapt safety assessment methodologies
- 12 Investigate performance and maintenance

R&D gaps for LW-SMR Expand NUWARD and LDR-50 knowledge base

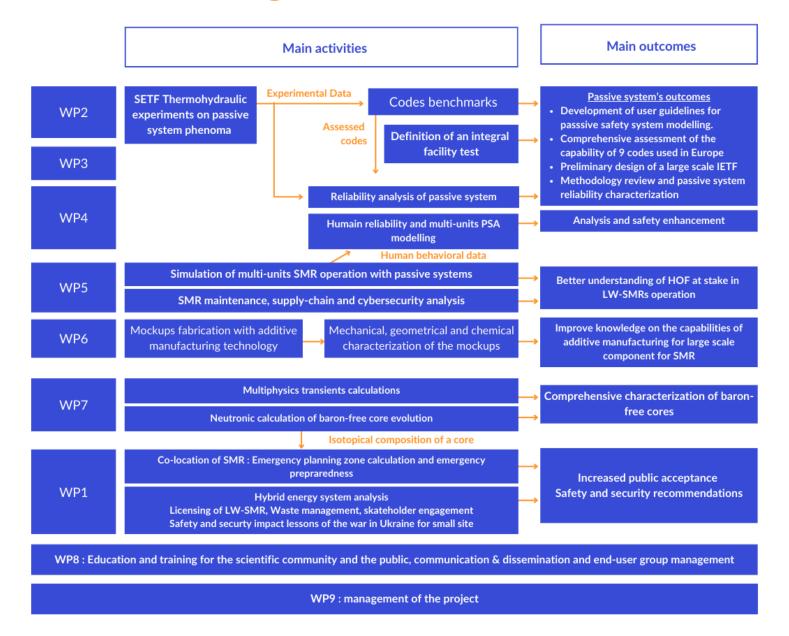
USES BEYOND ELECTRICITY

- Hybridization
- Co-location
- Technical-economic analysis
- Public acceptance

HUMAN FACTORS

- Multi-unit operations
- Passive safety systems
- Operating multiple processes (hybridization)
- Human reliability analysis methodologies

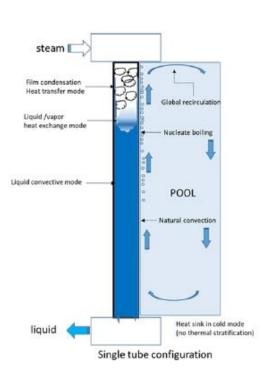
SEVERE ACCIDENTS


- Experimental and analytical needs for SA scenarii
 - RPV integrity (IVR)
 - Containement integrity (H2, inertization)
- Dose calculation (EPZ)

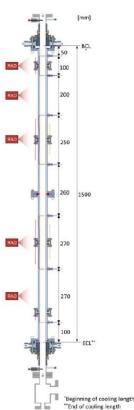
MODULARIZATION

- Advanced construction techniques (SCS,...) and its qualification
- Transportation
- Interface management

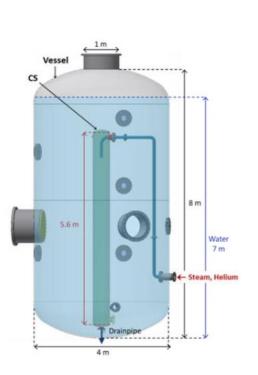
EASI-SMR Project structure



Experimental test program


COSAC:

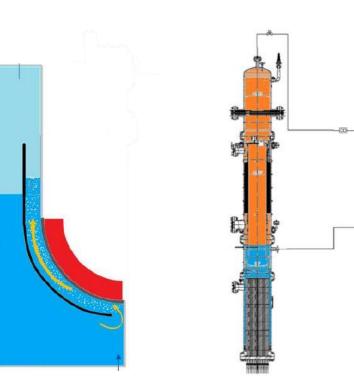
- SET
- Condensation in SACO tube


PRECISE:

- SET
- Condensation in SACO tube (CFD approach)

PANDA:

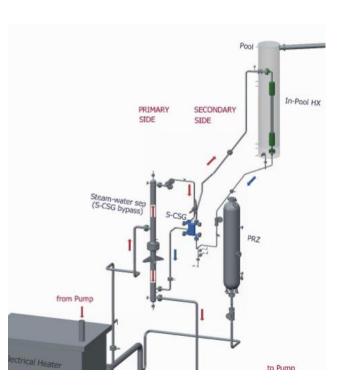
- SET
- High Ra natural convection in heat sink



IVR LOOP:

- SET
- IVR: thermosiphon and pool boiling mode

- SET
- Pressurization and injection phase of a gravity accumulator

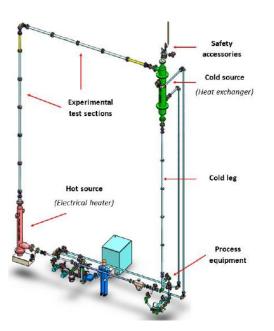


Experimental test program

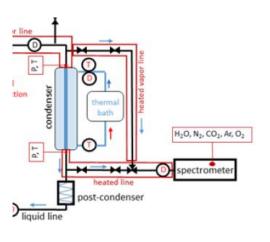
ELSMOR II:

- sIET
- SBO transient and NCG effect in the S-CSG

FHEASIK:


- sIET
- DHRS performance of the LDR50

ALCINA:


- SET
- Thermosiphon
 performance of Safety

 Condenser

ECRINS:

- SET
- Condensation heat transfer in Mini channels with NCG

Safety Assessment of non-electric uses of nuclear (SANE)

Workshop: Small Modular Reactors (SMRs) for District Heating Oct. 22, 2025

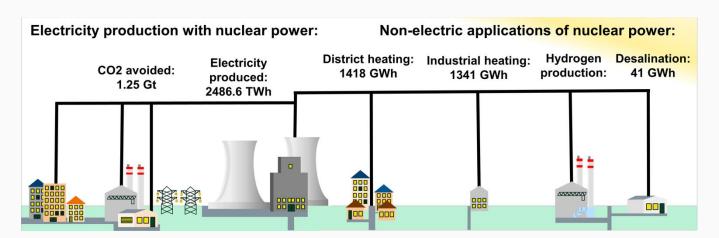
Atte Helminen (VTT), Manager of SANE project

Project funded by

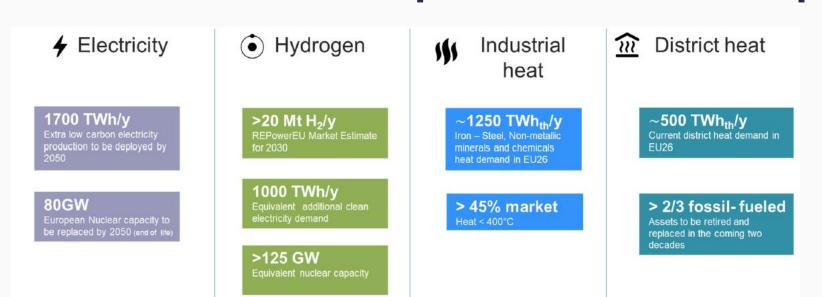
Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education Research and Innovation SERI

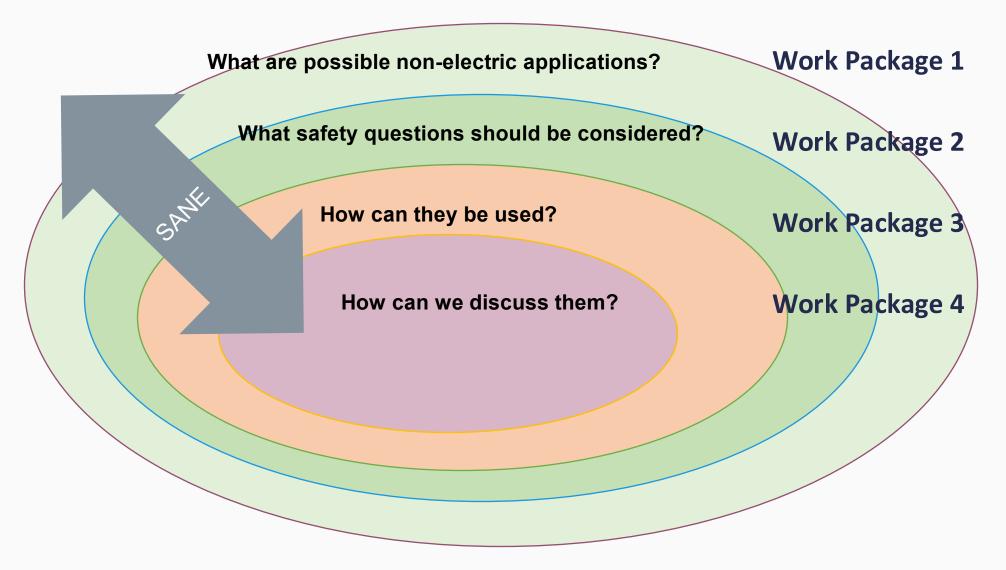
The objectives of SANE


The main objective of SANE is to investigate the potential of nuclear energy to supply services other than electricity

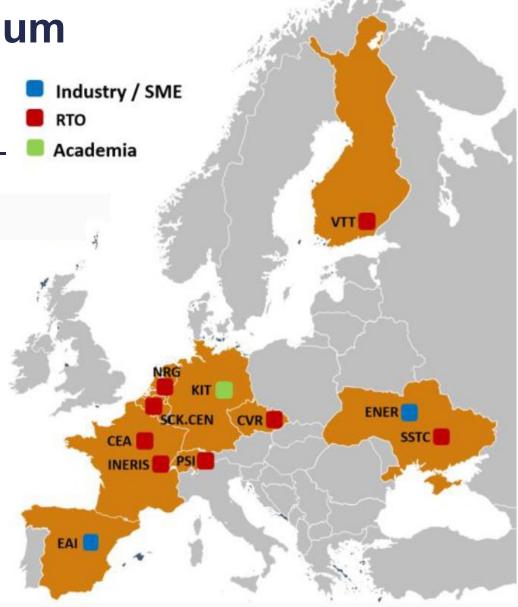
Specific objectives:


- Increasing understanding of non-electrical uses of nuclear energy
- Improving safety assessment methodologies of nuclear reactors meant for non-electric uses
- Producing information to support radioprotection of population
- Assessing the performance, and improving the safety assessment methodologies, of nuclear reactors coupled to non-electric end-uses
- Development of risk communication strategies related to non-electric applications of nuclear energy

Project started on Sept.1, 2024; Duration 36 months; 11 participating organizations from 9 European countries; EU contribution approx. 3.5 M€


Non-electric applications exist but are rare

SANE aims to facilitate path towards their potential



Research questions

SANE WP Structure and Consortium

- WP1: Feasibility of non-electric uses (lead: PSI)
- WP2: Safety of nuclear reactors intended for nonelectric uses (lead: VTT)
- WP3: Performance and safety of non-electric end-use cases (lead: NRG)
- WP4: Risk communication (lead: KIT)
- WP5: Training, Dissemination and Exploitation of Results (lead: CVR)
- WP6: Project Management (lead: VTT)

What are possible non-electric applications?

Feasibility of non-electric uses

The main objective is to assess potential of non-electric uses of nuclear energy over a wide range of future applications.

- A high-level overview of potential non-electric uses of nuclear energy and its integration with renewables.
- Case studies of selected applications considered to be of high importance for Europe in the middle and long term, e.g. e-fuels, process industry, *district heating*, desalination, hydrogen production, direct air capture of CO2, and propulsion for ship and space applications.

What safety questions should be considered?

Safety of nuclear reactors intended for non-electric uses

Safety of non-electric uses of nuclear energy is studied through case studies centered around a low temperature district heating reactor concept.

- Suitability of conventional safety assessment tools for analysis of Design Basis
 Accidents and Severe Accidents in a non-electricity-producing nuclear reactor.
- The scope is generalized from the district-heating use case by consideration of safety concepts, criteria and terminology, and how they differ from conventional nuclear power plants.

How can they be used?

Performance and safety of non-electric end-use cases

The objective is to assess the safety of non-electric end-uses of nuclear energy and the feasibility of the coupling between a nuclear power plant and its non-electric use by for instance process industry plant

- Different couplings to be investigated, for example district heating, hydrogen production, direct air capture, and synthetic fuel generation.
- Various NPP designs will be investigated in order to cover both low temperature processes as well as high temperature processes.

How can we discuss them?

Innovations in risk communications

General objective is exploring and identifying the ways to improve communication of risk arising from the operation of a nuclear power plant "in your backyard" by

- Using safety study information for communicating the risk associated to the novel reactors.
- Through case studies in three different countries (Finland, Belgium, Netherlands) studying the needs of stakeholders and public, when new nuclear technologies are announced to be deployed.
- The lessons learned from crisis and emergency risk communication related to ZNPP in Ukraine and abroad during 2022-2023.

Dissemination, exploitation and training

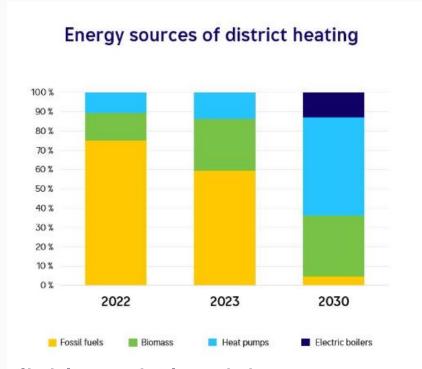
Aim of the work package is to handle the communication, dissemination, exploitation, and training activities, such as

- Communications activities to increase awareness of non-electric applications,
- Dissemination and exploitation activities to increase impact of research results
- Fostering of industrial end-user group to provide important insight to research, and
- Organizing workshops and training.

Finnish Case Study: District heating SMR in capital area

After shutdown of Salmisaari power plant in the heart of Helsinki on April 1, 2025, Finland practically stop using coal for electricity and heat production.

The Hanasaari B power plant was commissioned in 1974 as a coal-fired power plant. Photo by Matti Mattila via Wikimedia Commons under CC BY 2.0


Case study: Finland

Helen Ltd - owned by the City of Helsinki- provides electricity, heating and cooling

to its customers

 Helen's ultimate goal is to achieve non-combustion energy production by 2040.

- To achieve this goal, use of SMRs are investigated in Helen's nuclear energy programme.
- Negotiation with potential partner shareholders, evaluate plant suppliers and determine potential plant sites.
- The first phase of is due to be completed in 2026.
- Replacement of combustion energy requires a steady, reliable and electricityindependent heat source that can be located near the district heating network.
- Helen is one of the Industrial End User Group members of SANE project.

Case study: Finland

May 6, 2025

Steady Energy to build small nuclear pilot plant inside a former coal plant in central Helsinki

Reference: https://www.steadyenergy.com/news-article/steady-energy-to-build-small-nuclear-pilot-plant-inside-a-former-coal-plant-in-central-helsinki

Regulatory reform creates space for new plant solutions

The starting points of the reform are to modernize legislation, **develop licencing and regulation to become more risk-informed and enable the adoption of new technologies and business models.** The Ministry of Economic Affairs and Employment's objective is to process the law during the current Parliament. STUK's regulations are prepared in the same schedule.

"Addressing the issues related to small modular reactors is linked to STUK's regulatory work. The reform takes into account the issues raised with the small modular reactors, such as their location close to settlements, possible remote use, new operating models for the use of plants and applications other than electricity generation, for example, district heating. When developing the regulations, we engage in active discussions with our stakeholders, other authorities and the industry," says Jussi Heinonen, Director responsible for the regulation reform

Reference: https://stuk.fi/en/stuk-makes-preparations-for-the-arrival-of-small-modular-reactors

Picture source: Wikipedia.org

Thank you

Follow SANE project: https://www.sane-euratom.eu/

Funded by Euratom Research and Training Programme.

The Associated Partner PSI is funded by the Swiss State Secretariat for Education, Research and Innovation (SERI).

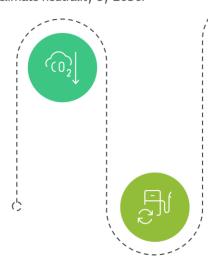
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, Euratom Research and Training Programme.

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

• • •

WORKSHOP: SMRs FOR DISTRICT HEATING October 22d, 20225


A. AL MAZOUZI

EU Energy & Industrial Policies

EU Climate Neutrality Objective

The EU sets a goal to achieve climate neutrality by 2050.

REPowerEU Roadmap

A strategy to phase out Russian oil and gas, restrict nuclear materials imports, and accelerate the clean energy transition.

Competitiveness Compass

A roadmap to revitalise Europe's economic dynamism and foster sustainable growth

Affordable Energy Action Plan

A plan to lower energy prices and reduce overall energy costs

Clean Industrial Deal

An initiative to support the reduction of carbon emissions in energy-intensive sectors

EU Start-up & Scale-up Strategy

A strategy to promote innovationfriendly regulation and enhance access to finance.

Amendment to EU Climate Law

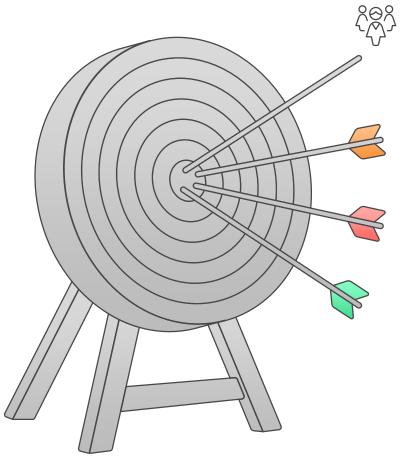
A proposal to establish a 2040 target to reduce net greenhouse CO_2 emissions by 90%.

Nuclear Illustrative Programme (PINC)

A comprehensive overview of nuclear energy investments across the EU.

Net-Zero Industry Act

A legislative tool to strengthen and revitalise the nuclear supply chain


SMRs Strategy

A strategy expected to be adopted in 2026 to promote small modular reactors

Towards SMRs in the EU

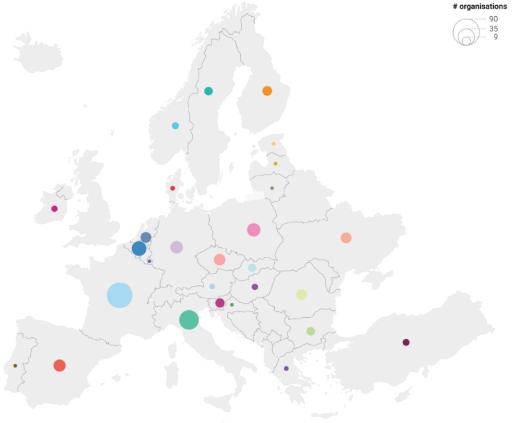
గ్రింగ్ల్లో Key Stakeholders

Involved in SMRs

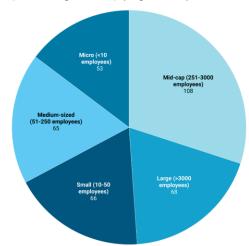
Strategic and regulatory framework

Business Alliance (14 federations, Feb'25)

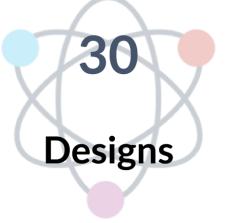
Market creation, investment mobilization, commercial viability


Industrial Alliance (members, May 24)

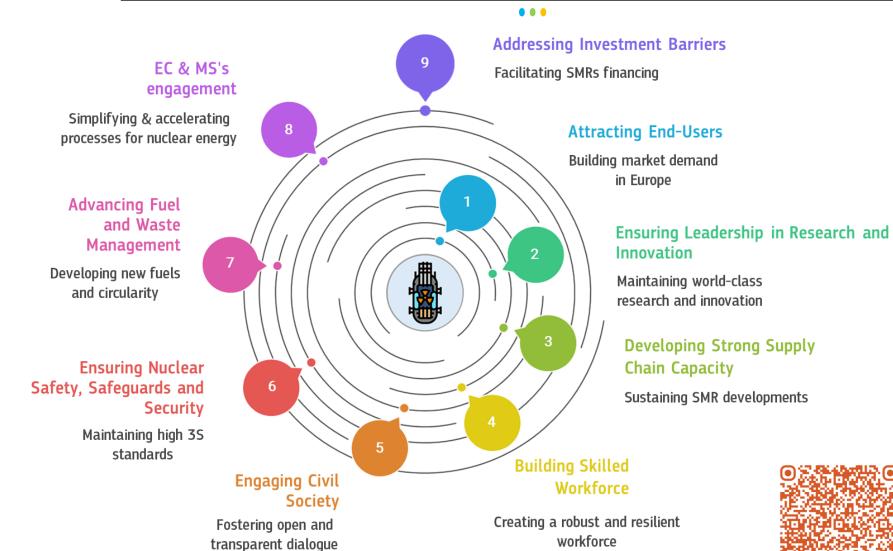
Technical development, supply chain readiness, innovation


[Country distribution, members] August 2025

Maintenance/repair/overhaul organisation Public Administration Research institute, University, Training centre Manufacturer of components Service Engineering provider Financial Organisation Institution Other


[Size of Organisation] (August 2025)

Members 360


5 Technologies

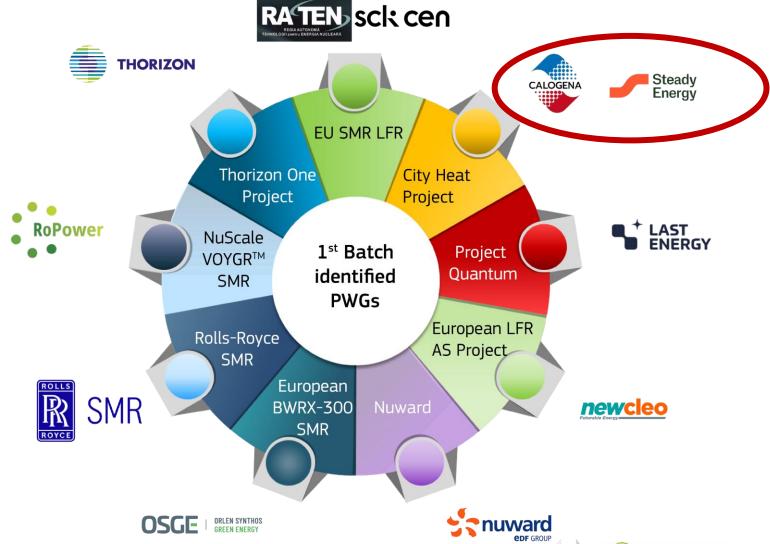
Key Challenges for SMR deployment in the EU

Strategic Action Plan 2025-2029

Towards the development and deployment of SMRs in Europe

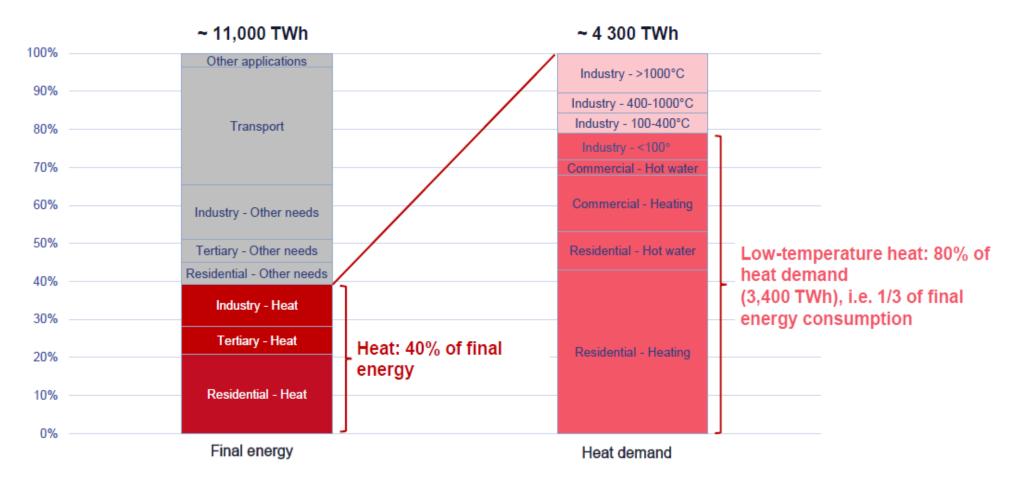
European Industrial Alliance on SMRs 202

Published on 12 September 2025


European IA on SMRs 1st batch PWGs*

ansaldo nucleare

Based on:

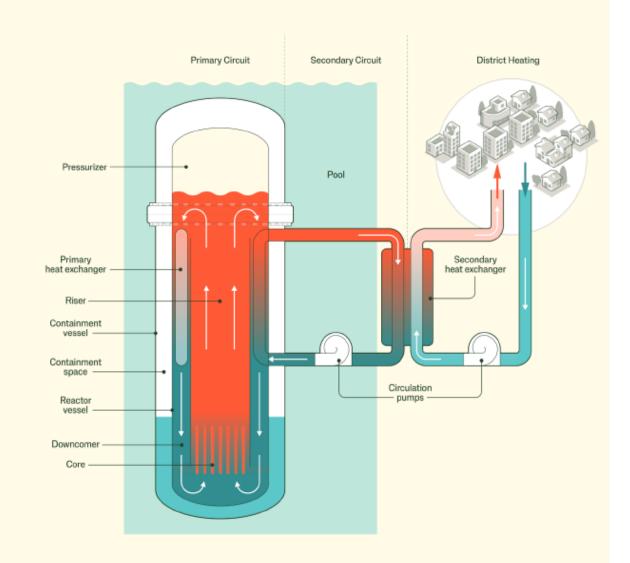

- Added value to the European economy
- Support from diverse European Stakeholders
- Compliance with EU legislative framework
- Addressing NET-ZERO objectives

Low-temperature heating accounts for a third of final energy demand in Europe

Final energy and heat demand EU-27, 2019

Calogena's module is specially designed for 3rd and 4th generation district heating networks

Power	30 MWth
Temperature adaptable to network requirements	70-110°C
Module lifetime	> 60 years
Ability for load-following	20-100% P _{nom}
Refuelling frequency	2 years
Land requirement	3000 m²
Electricity requirement	Standard for SMEs ¹
Water requirement	No cooling source ¹
Fuel	UO ₂ 3.4%
Installation	Suburban



LDR-50 – Technological simplicity

- Use Light Water Reactor technology, commercially mature for business without technology risk (TRL 9)
- Thermal power 50 MW per reactor
- Refueling every 2-3 years
- "Tried and tested" light water technology
- Only few moving parts
- Very low operating temperatures and pressures
- The reactor is the size of a shipping container
- Passive heat removal system
- Physically separated water circuits, lowest pressure inside reactor — therefore possible leak retained inside plant
- Reactor hall as strong as civil defense shelter

Why?: EU market needs

1600 TWh/y

EU Low carbon electricity production to be deployed by 2040

80GW

European Nuclear capacity to be replaced by 2050 (end of life)

>20 Mt H₂/y

REPowerEU Market Estimate for 2030

1000 TWh/y

Equivalent additional clean electricity demand

>125 GW

Equivalent nuclear capacity

~1250 TWh_{th}/y

Iron – Steel, Non-metallic minerals and chemicals heat demand in EU26

> 45% market

Heat < 400°C

n District heat

\sim 500 TWh_{th}/y

Current district heat demand in EU26

> 2/3 fossil- fueled

Assets to be retired and replaced in the coming two decades

European Industrial Alliance on SMALL MODULAR REACTORS

Find out more

Contact us: grow-EU-SMRS-ALLIANCE@ec.europa.eu

© IA SMRs. All Rights Reserved

Photos and Icons, source: stock.adobe.com, sources: Ansaldo nucleare: https://www.ansaldoenergia.com/companies/ansaldo-nucleare; Enea: https://www.enea.it/it; RATEN: https://www.raten.ro/;SCK-CEN: https://www.sckcen.be/en;Calogena: https://www.calogena.com/; Steady Energy: https://www.steadyenergy.com/; Last Energy: https://www.lastenergy.com/; newcleo: https://www.newcleo.com;Nuward: https://www.nuward.com/en; OSGE: https://osge.com/; Rolls-Royce: https://www.rolls-royce.com/innovation/small-modular-reactors.aspx#/; RoPower: https://www.nuclearelectrica.ro/; Thorizon: https://thorizon.com/

