

CLIMATE NEUTRAL AND SMART CITIES

Impact Pathways and Indicators for your City's Climate-neutrality Transition

NZC Winter School Budapest 24th November 2023

Cities gardening for systemic impacts

Sowing

2023

Portfolio of

Actions

Watering / Sprouting

2025

Short-term

Changes

Rooting / Tending

2027

Mid-term

Changes

*Thriving*2030 & beyond

Long-term Impacts Direct & Co-benefits

'Impact Pathways' tell a story about how systemic transformation is expected to unfold...

Fundamental and connected mechanisms through which complex longterm systems transition is envisioned and managed

not only whether the final target was (or wasn't) achieved Focus of traditional planning & MRV and GHG scenarios **Actions Early Outcomes** Later Outcomes Impacts ... which will help Strategic Objectives cities achieve "The Messy Middle" their 2030 vision ... considering the most important assumptions and riFocus of systemic change measurement & learning

This project has received funding from the H2020 Research and Innovation Programme under grant agreement n°101036519.

...to allow us to evaluate outcomes as they happen,

...to allow us to evaluate outcomes as they happen, not only whether the final target was (or wasn't) achieved

*Illustrative graph only (Source: City of Oslo, 2016)

NZC Impact Framework

Most relevant AP template Modules

4.1	Module B-1	Climate	Neutrality	Scenarios	and	Impact
	Pathways					

Module B-1 "Climate Neutrality Scenarios and Impact Pathways" should list impact pathways, early and late outcomes and direct and indirect impacts (co-benefits) according to and adapted from the NZC Theory of Change and the AP Guidance – clustered by fields of action.

B-1.1: Impact	Pathways					
Fields of action	Systemic levers	Early changes (1-2 years)	Late outcomes (3-4 years)	Direct impacts (Emission reductions	Indirect impacts (co- benefits)	
	(Lever #1)	(Early change #1) (Early change	(Late outcome #1) (Late	(Direct impact #1)	(Indirect impact #1)	
Energy systems		#2) (List more changes as needed)	Outcome #2) (List more late outcomes as needed)	(List more direct impacts as needed)	(List more indirect impacts as needed)	
	(List more levers as needed)	- S.B.	1220	1000		
(Apply structur	e above for eac	h emission domain)		a -	-1)- 	
Mobility & transport						
Waste & circular economy						
Green infrastructure & nature- based solutions						

What's a good way to start?

Systemic levers as an entry points

Field of Action: Actions Levers Direct Impacts Co-benefits Transport / Mobility Co-benefits Co-benefits Co-benefits Co-benefits

The black box (or messy middle) of strategic planning!

NetZeroCities has received funding from the H2020 Research and Innovation Programme under grant agreement n°101036519.

 \mathbf{O}

What are the Action Plan's Early Changes?

What are the Action Plan's Later Outcomes?

How are actions/impacts connected through pathways?

Measuring progress along pathways through indicators

Impact Pathways example – Technological innovation & infra.

Interventions

Outcome

Mixed methods to measure and learn...

Plan for treatment & progress tracking (relative to initial diagnostic baselines)

- What outcomes expected for sectors with minimum GHG reduction potential?
- How closer is your city to climate-neutrality?
- How will change become visible?

From Impact Pathways to M-E-L system for your city

...to move from data to useable insights and wisdom

Cartoon by David Somerville

Impact Pathways/MEL within Transition Map

Questions or comments?

The 7-step co-creation for today

- **STEP 1:** Identify Emission Domains
- STEP 2: Identify Systemic Levers of Change
- STEP 3: Identify Early Outcomes
- STEP 4: Identify Later Outcomes
- STEP 5: Identify and Classify Impacts (Direct Impacts & Co-benefits)
- **STEP 6:** Find purpose/use of Data & Insights for MEL
- **STEP 7:** Select Indicators to measure impacts

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Flow of the session today

- Short presentation: Intro to the Overall NZC Impact Framework and Impact Pathways (15 mins)
- **STEP 1:** Identify Emission Domains (5 mins)
- **STEP 2:** Identify Systemic Levers of Change (5 mins)
- **STEP 3:** Identify Early Outcomes (10 mins)
- **STEP 4:** Identify Later Outcomes (10 mins)
- Short presentation: Intro to the NZC Indicators, MEL and Data Management (15 mins)
- **STEP 5:** Identify and Classify Impacts (Direct Impacts & Co-benefits) (10 mins)
- **STEP 6:** Find purpose/use of Data & Insights for MEL (10 mins)
- **STEP 7:** Select Indicators to Measure impacts (10 mins)
- Reflections & playback from groups (15 mins)

NET ZERO CITIES

Impact Pathways and Indicators for your City's Climate-neutrality Transition: A 7-Step Process Connecting the CCC Action-planning with strategic objectives and MEL

STEP 1 Identify Emission Domains	STEP 2 Identify Levers of Change	STEP 3 Identify Early Outcomes	STEP 4 Identify Later Outcomes	STEP 5 Identify and Classify Impacts	STEP 6 Select Indicators to Measure impacts
		TIMELINE When will the impacts emerge?		Direct Impacts (GHG) Indirect Impacts (Co-benefits)	
Portfolio Co-desig Composition insights	n	STEP 7 Use the Data & Insights for MEL			

Impact Pathways and Indicators for your City's Climate-neutrality Transition: A 7-Step Process Connecting the CCC Action-planning with strategic objectives and MEL ZERO

NET

Interactive Exercise 1 (30 mins)

NZC Winter School Budapest 24th November 2023

STEP 1: Identify Emission Domains

- Has my city prepared an inventory in the last 5 years/reported a GHG emission inventory in MyCovenant or CDP-ICLEI Track based on the accounting year 2018 or more recent?
- Are there any other inventories being developed by your city? Are separate inventories being used for reporting vs. action planning internally?
- How has your city identified the most critical emissions domains (how was this focus reached?) (Largest emitters, Science-based Targets, policy/political conditions etc.)
- How could this larger Emission Domain be further reframed as a specific sub-sector or specific actions at the city-level?

STEP 2: Identify Systemic Levers of Change

- How is your city balancing the city-wide needs in terms of emission reduction through place-based interventions with citizens and communities?
- Do the selected actions show the interdependence of problems across multiple types of levers in the city-wide context?
- Do the actions identify opportunities for synergistic actions in the city-wide context? (Which are the cross-cutting actions that apply across all the Emission Domains identified?)
- Where are the gaps or barriers for each Lever of Change? Which Levers are less developed and need the most efforts to address?

STEP 3: Identify Early Outcomes

- Which are the **quick wins or long-hanging fruits** gained from the implementation?
- Which necessary and short-term outcomes are within the direct mandate of the city? (Which changes relate with <u>"transformation inside"</u> the municipality?
- Does the city adequate capacity, policies or organisational set up to implement this activity? What could negatively affect this capacity or which capacities are needed to be newly developed?
- Early Outcomes describe who is affected by your intervention. For whom is your intervention designed? How much does your target group need to change – or who are the missing actors that need to be reached?
- Which outputs will your city produce along the way? Early Outcomes could also describe physical, digital, or knowledge-based infrastructure that are made along the way.

STEP 4: Identify Later Outcomes

- What are the Early Outcomes going to lead to or result in? What effect are they going to have at the city-wide scale?
- What is **a realistic timeline** for these results to become visible?
- What is the <u>transformation outside</u> the city's mandate that starts emerging as a result of Early Outcomes?
- What are the target outcomes around which you can define possible success based on the actions identified in the portfolio?
- Later Outcomes should be **specific and measurable** and can be tracked through activity monitoring to signal progress. Can you identify these for your city?

Starting points for co-creating Impact Pathways

- What are the specific **changes** (outcomes) is the Action Plan seeking?
- How are the outcomes related to your city's climate-neutrality vision? (What is the threshold of 'success'?)
- Which **co-benefits/impacts** is the Action Plan aiming to achieve?
- When does the Action Plan expect to achieve these changes (timeline earlier or later)?
- Where and under what conditions/contexts is this going to happen? What are the necessary preconditions for the later outcomes?
- Who will be affected from the Actions and how? (or who might benefit?)
- How do you think **implementation will work in practice** and how will one change **lead to** another?
- Which direct impacts and co-benefits occur **during** the changes begin to happen?
- What will your city and stakeholders and other partners **do** to make the changes happen (**activities or actions**)?
- Are there any **barriers** that may prevent making these changes happen? (risks & assumptions)

Check-list for finalising Impact Pathways within the template

- Does this set of outcomes sufficiently capture the *intent or goal* of the Action Plan? If not, what's missing?
- Are the outcomes clearly and *specifically* defined? (i.e., one outcome statement)
- Are there any gaps in the impact pathways? (e.g., is there an intermediate outcome that needs to be included)
- Are the causal links as *mechanisms* for change clear? Can they be explained as a story?
- What's the evidence that supports the links between the various Impact Pathway elements? Any existing evidence or data sources? If not, what are the evidence gaps?
- How do the planned *activities/outputs* connect and contribute to the outcomes?
- Which are the common outcomes *across multiple levers and fields of action*?
- How could similar outcomes be *clustered or combined* as bold strategic objectives for coordinated actions?

NZC Indicators, Monitoring Evaluation and Learning (MEL)

NZC Winter School Budapest 24th November 2023

Indicator domains for CCC AP/IP

Required – Black Text

Recommended – White Text

GHG Emission Scopes

Connecting emission domains to activities

Indicator domains for CCC AP/IP

Required – Black Text

Recommended – White Text

OMAIN	SUBDOMAIN		INDICATOR NAME	UNIT OF MEASUREMENT	GHG
		A	GHG emission from stationary energy	t CO2 equivalent	
	Stationary Energy	 	Energy use by fuel/energy type within city boundary	MWh/year	Indicators
			GHG emission from transport	t CO2 equivalent	
	Transport		Fuel consumption for in-boundary transportation	MJ/kg/kWh	
			GHG emission from waste	t CO2 equivalent	
	Waste		Mass of waste processed per end-of-life treatement type within city boundary	t	
			Mass of waste processed per end-of-life treatement	t	
	Industrial Processes and Product Use (IPPU)	A	GHG emission from IPPU	t CO2 equivalent	
			Emission generation potential per unit of	CO2 equivalent per kg of	
			input/output for industrial processes within the city Emissions from non-energy product use	production	
Greenhouse Gas					
Emissions (GHG)	Amiguitume Ferretty and other	<u>, </u>	GHG emission from AFOLU	t CO2 equivalent	
	Land Use (AFOLU)		Net annual rate of change in carbon stocks per hectare of land	t CO2/ha	
\frown		.	Energy (In)Dependence	%	
$\begin{pmatrix} CO_2 \\ \downarrow \downarrow \downarrow \downarrow \end{pmatrix}$	Energy		Local renewable energy production	% in kWh	
V			GHG emission from grid supplied energy	t CO2 equivalent	
	Grid-supplied energy (electricity, heat, steam or		Grid specific emission factor	tCO2 eq/MWh	
	cooling)		Grid loss factor		
			Amount of normanont conjunction of CHC within	t CO2 oquivalant	
			city boundary		
	Carbon Capture and Residual		Negative emissions through natural sinks	t CO2 equivalent	Direct Indirect
	Emissions		Residuel emissions	0/	Greenhouse Gas Public Health & Social Inclusion, Emissions (OHO) Environment Environment
			Residual emissions	/0	

Indicator domains for CCC AP/IP

Mandatory/ optional indicators (see indicator name)

Required – Black Text

Recommended – White Text

Public Health & Environment

DOMAIN	SUBDOMAIN		INDICATOR NAME	UNIT OF MEASUREMENT
			PM2.5 concentration levels	μg/ m3
	Air quality	ال ال	PM10 concentration levels	# of days
			NO2 concentration levels	μg/ m3
			% of adult population with High Sleep Disturbance	
	Noise pollution)	% of population exposed to night-time noise (Lnight) >= 50 dB	
			% of population exposed to avg. LDEN >= 55dB	
		₽\$\$ [₽]		
	Road safety road safety	//		
Public Health & Environment	Urban Heat Island (UHI) effect Temperature Increase and	Â	Mean value of daily maximum temperature (TXX)	°C TXX
	Heatwave Incidence			
	Physical and mental well being	Ř		
	Liveability, attractiveness &	t T		
	aesthetics of the built environment	*		
	Equitable & affordable access			

Social Inclusion, Social Innovation, Democracy and Cultural Co-benefits

DOMAIN	SUBDOMAIN			UNIT OF MEASUREMENT
	Investment in R&I	Å	Research intensity	%
			Green jobs	% of jobs
	Number of skilled jobs & rate of employment		Youth umemployment rate	% of people
Economy	Economic thriving	GDP	Gross Domestic Product	€/cap
$\uparrow \checkmark$	Technological readiness & rate of adoption	gr	Adoption rate of key climate neutral technologies	%
			Climate-Neutral City Start-ups	#/100.000
	Local entrepreurship & local businesses / ventures		New businesses registered	#/100.000
			Surviving number of new companies registered after year 3	#/100.000

Resource Efficiency

DOMAIN	SUBDOMAIN		INDICATOR NAME	UNIT OF MEASUREMENT
	Waste management and efficiency		Recycling rate of municipal waste	%
			Domestic material consumption	t
	Deployment of material cycles & circular economy	~	Recycling rate for specific material streams	%
		ĽØ	Circular Material Use Rate (CMU)	%
			Household water consumption	litres/capita/day
Resource Efficiency	Water management		% of urban wastewater meeting the UWWTD requirements	%
		ſ	Local food production	
	Sustainable food production	J. C	Food waste volume	t/cap
			Food Waste Index	Tonnes
			Growth rate of urbanized land	m²/capita/year
	Land use management practice		Brownfield use	% of km2

Biodiversity

OMAIN	SUBDOMAIN		INDICATOR NAME	UNIT OF MEASUREMENT
Biodiversity	Urban Forestry, Plantation &		Percentage of tree canopy within the city	% of the municipal area
	Non-invasive species & polinators	A.S.	Change in the number of species of birds in built-up areas in the city	% of change in species
			Citizen's awareness regarding sustainabilty and the environment	Likert scale
	Ecological awareness		Pro-environmental identity	Likert scale
			Mindfulness	Likert scale
	Ecological habitat connection		Structural connectivity of green spaces	ha
		-	Percentage of protected natural areas	
	Nature restauration	Q. H	Percentage of restored and naturalised areas on public land within the city	

Required

<u>Mandatory/ optional indicators</u> (see indicator name)

Required – Black Text

Recommended – White Text

DOMAIN SUBDOMAIN INDICATOR NAME UNIT OF MEASUREMENT Investment in R& Number of skilled jobs & rate % of peop of employment Economy Economic thriving Technological readiness & rate of adoption <u>A</u> $|\times$ 000 Local entrepreurship & local nesses / ventures Waste management and efficiency Deployment of material cycles & circular economy <u>المجر</u> Resource Efficiency Ð Sustainable food production Land use management practice 26 tage of tree canopy within the city % of the municipal area 11.50 Urban Forestry, Plantation & Biodiversity Improved Plant Health Change in the nu areas in the city -invasive species AS Ľ Ecological awareness -Ecological habitat connection Q. Nature restauration

Covering all GHGs

0

Additional sub-domains

Finance & Digitalisation

DOMAIN	SUBDOMAIN			UNIT OF MEASUREMENT
			Capital Invested in Climate Action Projects	EUR million
	Public Spending		Budget Assigned to Climate Action Projects	% of City Budget
			Capital Invested in Climate Action Projects per Capita	EUR thousand
Finance and	Future 1 Counting		Capital Invested in Climate Action Projects	
	External Spending		Coverage of Climate Finance Gap	% of Capital Deficit Covered
	Capital Efficiency	Ĭ×,		
	Fiscal Responsibility			
	Green ICT and Smart Metering		% of households and buildings with reduced energy	% of households
			% of households and buildings with reduces water consumption as a consequence of installing smart water meters	% of households
			% of municipal buildings equipped with building energy management systems	% of public buildings
Digitalisation and	EGovernment	-		
Smart Urban				
	Access to information			
	Urban Data Platforms	æ		
		00		

Menti.com - 1363 4247

What issues do you encounter in gathering GHG related data within your city region?

Measurement Collection **Reporting** (Visualisation and engagement) Verification (Linking to National platforms) Setting targets through Action planning **Investment planning Portfolio planning and Implementation**

the cycle continues for the next measurement period.....

"If you can measure it, you can manage it!"

What are we measuring?

Mandatory vs. recommended (Ghg mandatory, non Ghg?)

(Mitigation vs. Adaptation)

Starting point (Our Indicators Action Where are we involving people??

(Our city versus Standard formats)

ClimateView

RES

Join the community of cities on ClimateOS

Get Started

ClimateOS

USE CASES

Google EIE Overview

- 01 Building emissions
- **02** Transportation emissions
- 03 Rooftop solar potential
- 04 New data pilots (Tree Canopy & AQ)

View EIE at https://insights.sustainability.google/

Linking Data to Net Zero Journey 2030

Connecting to

Place, People, Practice

Where are we reporting?

Indicator selection from the perspective of resources, capacities and potential

MyCovenant, the private space of the European Covenant of Mayors Community

Once signed in, you will be able to:

- update your contact information
- fill in and submit your action plan
- monitor progress towards your target
- and access the capacity-sharing corner.

If you haven't registered yet, please check your eligibility and register here. If you don't remember your user email, please contact our helpdesk

> The Cities Energy Saving Sprint

Impact Indicator Selection

1

3

Indicator selection from the perspective of:

- Requirements
- Needs

...

.

• Expectations

Indicator selection from the perspective of their roles / functions:

• To educate

- To inform
- To signal

...

•

Indicator selection from the perspective of:

- Resources
- Capacities
- Potential

How to make data and indicators work for your city?

2

How to make data and indicators work for your city?

Its time dear city to write your story! In this new language of data!

Questions or comments?

Interactive Exercise 2 (30 mins)

NZC Winter School Budapest 24th November 2023

STEP 5: Identify and Classify Impacts

- Where in the GHG emissions inventory do you see change happening based on selected activities?
- Which **scope of emissions** do you see getting **impacted**?
- What potential changes in the current practice of climate neutrality action identification and classification are needed in your city to meet requirements of the 2030 Climate Action Plan better?
- In addition to GHG reduction, which are the tangible or visible impacts that can signal positive change in the lives of citizens and communities? (How can regular citizen start seeing and experiencing climate-neutrality in their day-to-day lives?)

STEP 6: Use the Data & Insights for MEL

- How could you describe the current state of the climate neutrality performance data availability in your city? What are the key characteristics of the currently available climate neutrality performance data?
- How could you describe the current practice and system of the climate neutrality performance data management in your city? What are the key characteristics of the current climate neutrality performance data management system?
- What potential changes in the current practice of climate performance data management system do you foresee needed in your city to meet requirements of the 2030 Climate Neutrality Action Plan better?

STEP 6: Use the Data & Insights for MEL

\mathbf{O}

Goal of data management and indicators

- What kind of climate neutrality action data does your city already have?
- What are the most important parts of your city's climate neutrality action system you want to monitor?
- How could you define the goal of your city's climate neutrality action monitoring system you want to achieve?
- How would you like to use the climate neutrality action monitoring system and data in your city day-to-day activities and strategic decision-making?

Selection and refinement of KPIs

- What data points can you use to measure this change?
- Is the city able to address all gases as defined by the mission through these changes?
- Which stakeholders do you need for the monitoring of this KPI?
- Do you see the relevance of this KPI across different stakeholder groups involved in the city transition?
- Is this KPI realistic to monitor regularly (annually/once every two years) for the city?

STEP 7: Select Indicators to Measure impacts

Relevance of Sub-Domains for Measuring Impact (NZC Indicator Set)

• Which NZC Sub-Domains are the most relevant for measuring the Impact of your CCC Action Plan?

Relevance of Indicators for Measuring Impact

 Do you expect that the indicators presented in the NZC Indicator Set will adequately measure the Impact of your CCC Action Plan?

Accessibility and Availability of Data Sources

• Do you expect to have the necessary data sources easily available/accessible to your city in order to apply the proposed indicators?

Calculation of Indicators

• Once your city has acquired the relevant data to apply the indicator, how easy or difficult do you consider it will be to calculate the indicator?

STEP 7: Select Indicators to Measure impacts

Connecting activities and direct impacts to co-benefits

- What intended or unintended changes do you foresee happening based on selected activities?
- Which aspect of indirect impacts do you see changing? For example, biodiversity, economy, environmental/public health, resource efficiency and social inclusion.
- What activity relates to these changes?

Selection and refinement of indicators

- Is this indicator realistic to monitor regularly (annually/once every two years) for the city?
- Which stakeholders do you need for the monitoring of this key performance indicator?
- Do you see the relevance of this key performance indicator across different stakeholder groups involved in the city transition?

STEP 7: Select Indicators to Measure Impacts

- How could you describe the current practice of monitoring and evaluation of the climate neutrality performance in your city? What are the key characteristics of the current practice?
- How could you describe the current practice of climate neutrality performance indicator selection in your city? What are the key characteristics of the current practice?
- What potential changes in the current practice of climate neutrality action monitoring, evaluation, and indicator selection do you foresee needed in your city to meet requirements of the 2030 Climate Neutrality Action Plan better?

Thank you!

Get in touch with NetZeroCities!

🥱 @NetZeroCitiesEU

NetZeroCitiesEU

NetZeroCities EU

NetZeroCities

ĺM

www.netzerocities.eu

hello@netzerocities.eu

